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P and T-wave Delineation in ECG Signals

Using a Bayesian Approach and a Partially

Collapsed Gibbs Sampler

Chao Lin, Corinne Mailhes and Jean-Yves Tourneret

Abstract

Detection and delineation of P and T-waves are important parts in the analysis and interpretation

of ECG signals. This report approaches this problem using Bayesian inference to represent a priori

relationships among ECG wave components. Based on the recently introduced partially collapsed

Gibbs sampler principle, the wave delineation and estimation are conducted simultaneously by using

a Bayesian algorithm combined with a Markov chain Monte Carlo method. This method exploits

the strong local dependency of ECG signals. The proposed strategy is evaluated on the annotated

QT database and compared to other classical algorithms. An important property of this work is that

it allows not only the detection of wave peaks and boundaries, but also the estimation of P and T

waveforms for each analysis window. This can be useful for some ECG analysis that require wave

morphology information.

Index Terms

ECG, P and T-wave delineation, hierarchical Bayesian analysis, partially collapsed Gibbs sam-

pling, Markov chain Monte Carlo method.

I. I NTRODUCTION

The analysis of electrocardiograms (ECGs) has received increasing attention because of its

vital role in many cardiac disease diagnosis. Most of the clinically useful information in ECGs

can be found in the intervals, amplitudes or wave morphology. Therefore, the development of

efficient and robust methods for automatic ECG delineation isa subject of major importance.
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The QRS complex is the most characteristic waveform of the ECG signal. Its high amplitude

makes QRS detection easier than other waves. Thus, it is generally used as a reference within

the cardiac cycle. Concerning P and T-wave detection and delineation (determination of peaks

and limits of the individual P and T waves), algorithms usually begin with a QRS detection.

Temporal search windows are then defined before and after theQRS location to seek for the

other waves. Finally, an appropriate strategy is used to enhance the characteristic feature of

each wave in order to find the wave peaks and boundaries.

One can find in the literature many different P and T-wave delineation approaches [1]–[20].

A first class of algorithms is based on filtering techniques, such as adaptive filters [1], low-pass

differentiation (LPD) [2] and nested median filtering [3]. Asecond class of methods applies a

basis expansion technique to the ECG signal and use the resulting coefficients for detecting P

and T-waves. The different basis functions that have been considered in the literature include

discrete Fourier transform [4], discrete cosine transform[5] and wavelet transform (WT) [6]–

[8]. A third class of approaches considers classification and pattern recognition methods such

as fuzzy theory [9], artificial neural networks [10], pattern grammars [11] and hidden Markov

models [12]. Delineation can also be based upon the concept of fitting a realistic model to the

ECG and extracting parameters from the model to determine waveform onsets and offsets.

A particular attention has been devoted to Gaussian mixturemodels whose parameters can

be estimated with nonlinear gradient descent [13] or Kalmanfilters (KF) [14], [15]. Finally,

we would like to mention other delineation strategies basedon length transformation [16],

uniform thresholding [17], approximating function theory[18] and characterization of TU

complexes [19]. Note that some of these methods can only be used to obtain a subset of P

and T-wave characteristic points. Due to the low slope and low magnitude of P and T-waves

and the lack of universally acknowledged clear rule to locate the beginning and the end

of wave components, P and T-wave delineation remains a complicated task. Furthermore,

in addition to the estimation of wave peaks and limits, an accurate waveform estimation is

certainly relevant for some medical diagnoses (such as T-wave Alternans (TWA) detection

[21], [22]) or pathology analysis (such as arrhythmia detection [20]).

In this report, we introduce a novel hierarchical Bayesian model which simultaneously

solves the P and T-wave delineation task and the pointwise waveform estimation problems.

This model takes into account appropriate prior distributions for the unknown parameters

(wave locations and amplitudes, waveform coefficients). The prior distributions and the

likelihood of the observed data are combined to provide the posterior distribution of the
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unknown parameters. This posterior distribution depends on hyperparameters that can be

fixed a priori or estimated from the observed data. This report will consider both approaches

depending on the available information regarding these hyperparameters. To alleviate nu-

merical problems related to the posterior associated to theP and T-wave delineation, we

propose to resort to Markov chain Monte-Carlo (MCMC) methods [23]. MCMC are powerful

sampling strategies, appropriate to solve complex Bayesianinference problems. This report

concentrates on a particular MCMC method referred to as partially collapsed Gibbs sampler

(PCGS) whose convergence properties have been studied in [24]. The PCGS has shown

interesting properties for electromyography (EMG) [25] and optical coherence tomography

(OCT) [26], [27]. However, to our knowledge, it is the first time a PCGS is applied for P

and T-wave delineation in ECG signals. The ECG state sequence obeys the Markov property,

since the current state (P-wave, QRS complex and T-wave) onlydepends on its previous state.

This property inspires us to study a PCGS imposing a strong local dependency on the wave

locations. This local dependency improves the convergencebehavior and the computational

efficiency of the sampler.

The report is organized as follows. The ECG preprocessing considered in this work

is presented in Section II. Section III describes the different elements of the hierarchical

Bayesian model that will be used to solve the P and T-wave delineation problems. Section

IV studies a Gibbs sampler that generates samples distributed according to the posterior of

the proposed hierarchical Bayesian model. The generated samples will be used to estimate

the unknown model parameters and hyperparameters. The wavedetection and delineation

criteria based on the posterior distributions are also presented. Simulation results performed

on the standard annotated QT database [28] as well as a comparison to other algorithms are

given in Section V. Finally, conclusions are reported in Section VI.

II. PREPROCESSING

It is common to view ECGs as the union of two parts, namely, QRS-complexes and non-

QRS regions. The interval between each successive pair of QRS-offset and the subsequent

QRS-onset constitutes a non-QRS region. Due to the nonstationary nature of ECGs, detection

and estimation must involve a limited set of consecutive beats. In the proposed method, we

first detect QRS-complexes that are the most prominent parts of the ECG signal, and we

shift a nonoverlappingD-beat processing window to cover the whole signal. In the processing

window, detected QRS-complexes become a reference for detecting P and T-waves. We define
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a T search region and a P search region for each beat, relativeto the QRS complex boundaries

depending on a recursively computed RR interval. The T-search regions and P-search regions

within the processing window are then extracted individually to form a T-wave search block

and a P-wave search block. The preprocessing procedure can be summarized as follows:

1) QRS detection: QRS complexes are detected using Panet al.’s algorithm [29] based on

digital analysis of slope, amplitude and width. The filtering that is done prior to this algorithm

is found to be satisfactory. Thus no additional filtering is required before the delineation of

P and T-waves. Note however that any other QRS detection algorithm could be used in this

preprocessing step.

2) Removal of baseline drift: In the proposed algorithm, waveform coefficients are es-

timated simultaneously with the wave detection. Baseline drift causes inaccurate waveform

estimation results. For this reason, we employ the method proposed in [30] to remove baseline

drift in each RR interval.

3) Construction of P and T-wave search blocks: As shown in Fig. 1, in theD-beat

processing window,D successive right-hand neighborhoods of QRS offsets can be extracted

to form a T-wave search block. Similarly,D left-hand neighborhoods of QRS onsets can be

extracted to form a P-wave search block. Suppose thatkoff denotes a QRS offset location,

then a T-wave indicator can only appear in the right-hand neighborhood ofkoff which can

be denoted asJT (koff) = (koff + 1, . . . , koff +NT ), whereNT denotes the T-wave search

region width. Similarly, a P-wave indicator can only appearin the left-hand neighborhood

of a QRS onset locationkon. It can be denoted asJP (kon) = (kon −NP , . . . , kon − 1), where

NP denotes the P-wave search region width. The length of each target neighborhood could

be fixed either according to the cardiologists or related to the current estimated RR interval

(denoted by RRI). The amount of neighborhoods in each block depends on the length of the

processing window.

The proposed algorithm processes two search blocks (one forT-wave delineation and the

other for P-wave delineation) individually using the same Bayesian inference. Section III

introduces the Bayesian model applied to T-wave search block, while it should be noted that

this model is compatible for P-wave search block as well.

III. H IERARCHICAL BAYESIAN MODEL FOR T-WAVES

Deconvolution models have been widely used in many signal processing applications

including signal segmentation [31], layer detection [26],and EMG signal analysis [32].
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Fig. 1. Preprocessing procedure within theD-beat processing window: (a) Located QRS complexes. (b) T-wave searching

block. (c) P-wave searching block. RRI is the interval between the present QRS offset and the next QRS onset and RRI/2

is half of RRI, here we setNT = NP =RRI/2.

Following these ideas, signals in T-wave search blocks are assumed to be the convolu-

tion of an unknown impulse responseh = [h0, . . . , hL]T with an unknown input sequence

u = [u1, . . . , uM ]T such that

xk =
L∑

l=0

hluk−l + nk (1)

with k ∈ {1, . . . , K}, K = M +L is the block length, andnk denotes the additive Gaussian

noise with varianceσ2
n. Here, we adopt a zero boundary condition, i.e., the unknownsequence

um is assumed to vanish for allm /∈ {1, . . . ,M}. In matrix form, (1) can be written as

x = Fu + n (2)

wherex = [x1, . . . , xK ]T , n = [n1, . . . , nK ]T , F is the Toeplitz matrix of sizeK ×M with

first row [h0 0M−1] and first column
[
hT 0M−1

]T
(0M−1 is a (M − 1) × 1 vector of zeros)

F =
















h0 0 · · · 0
...

.. . · · ·
...

hL hL−1 · · · 0

0 hL
. . .

...
...

.. . . . . hL−1

0 · · · 0 hL
















K×M

.
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Fig. 2. Modeling of T-wave parts within the T-wave search block.

The sequenceu can be further decomposed as a binary sequencebm ∈ {0, 1} ,m =

1, . . . ,M indicating the T-wave existence multiplied by weight factors a = [a1, . . . , aM ]T

representing the T-wave amplitudes, as illustrated in Fig.2. Note that the impulse responseh

is supposed to be unique forD T-wave search regions within the processing window whereas

the amplitudesa vary from one region to another. Consequently, (2) can be written as

x = FBa + n (3)

whereB denotes theM ×M diagonal matrix diag(b) andb = [b1, . . . , bM ]T .

The unknown parameter vector resulting from this reparameterization isθ =
[
bT ,aT ,hT , σ2

n

]T
.

This report proposes to estimate the unknown parameter vector θ by using Bayesian esti-

mation theory. Bayesian inference onθ is based on the posterior distributionp (θ|x) ∝

p (x|θ) p (θ) (where∝ means “proportional to”), which is related to the likelihood of the

observations and the parameter priors. The likelihoodp (x|θ) and priorp (θ) for the T-wave

delineation problem are summarized below.

A. Likelihood

Using (3), the likelihood of the observed data vectorx can be expressed as

p
(
x|b,a,h, σ2

n

)
=

1

(2π)
K
2 σK

n

exp

[

−
1

2σ2
n

‖x − FBa‖2

]

where‖x‖ =
(
xT x
) 1

2 denotes the Euclidean norm.
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B. Prior distributions

We propose to model the unknown sequenceuk = akbk as a Bernoulli-Gaussian (BG)

sequence

bk ∼ Be(λ) , ak|bk = 1 ∼ N
(
0, σ2

a

)
(4)

whereBe(λ) is the Bernoulli distribution with parameterλ such thatp [bk = 1] = λ. In order

to handle both positive and negative wave amplitudes,ak is distributed according to a zero

mean Gaussian distribution with varianceσ2
a when bk = 1, whereasak = 0 otherwise.

Because of the Markov property of ECG, successive T-waves can only appear in search

regions located in the right-hand neighborhoods of each QRS offset (whereas P-waves are

located to the left-hand neighborhoods of each QRS onset). Thus the T-wave indicator vector

b cannot have two elementsbk = 1 andbk′ = 1 closer than a minimum-distance constraintd,

whered depends on the RR interval length. Consequently, the T-wave detection problem can

be seen as a BG blind deconvolution problem with deterministic local constraints as in [26],

[27]. The prior of b can then be defined as the product of a minimum-distance constraint

indicator functionIC(b) and the likelihood of independent Bernoulli random variables

p (b) ∝

(
∏

k=1,...,K

p (bk)

)

IC(b)

whereIC(b) enforces the minimum-distance constraintb ∈ C, i.e., IC(b) = 1 if b ∈ C and

IC(b) = 0 if b /∈ C.

Since there is no relation between the noise, the impulse response and the BG sequence,

σ2
n, h and(b,a) are assigned a priori independent priors such thatp (θ) = p (b,a) p (h) p (σ2

n).

The impulse responseh, and noisen are assigned Gaussian priors:p (h) = N (0, σ2
hIL+1), and

p (n) = N (0, σ2
nIK), whereIN denotes the identity matrix of sizeN×N . Choosing conjugate

Gaussian priors fora andh considerably simplifies the algorithm since the resulting condi-

tional distributions are also Gaussian. Here,σ2
a and σ2

h are fixed hyperparameters whereas

the noise varianceσ2
n is estimated jointly with the other parameters using a hierarchical

Bayesian model. The impulse response is normalized to avoid scale ambiguity (different

values of amplitude and impulse response could provide the same convolution results) such

that σ2
h = 1. Moreover, the proposed algorithm normalizes the ECG signals with different

amplitude resolutions by their maximum R-peak amplitude such that σ2
a = 1 can cover all

possible amplitude values. For the prior ofσ2
n, we use an inverse gamma distributionIG (ξ, η)
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Fig. 3. DAG for the prior distributions; the fixed parameters appear as dashed boxes.

as suggested in [31], whereξ andη are fixed hyperparameters providing a vague prior (few

informative).

C. Posterior distribution

The posterior distribution of the unknown parameters can becomputed from the following

hierarchical structure

p (θ|x) ∝ p (x|θ) p (a|b) p (b) p (h) p
(
σ2

n

)
. (5)

This hierarchical structure is shown on the directed acyclic graph (DAG) of Fig. 3. The usual

Bayesian estimators related to this posterior are the minimum mean square error (MMSE)

estimator and the maximum a posteriori (MAP) estimators [33]. Due to the complexity

of the posterior distribution (5), it is difficult to obtain closed-form expressions of these

estimators. As a consequence, we propose to study an MCMC method which generates

samples asymptotically distributed according to the target distribution (5). The MMSE or

MAP estimators of the unknown parameters are then computed using the generated samples.

The main principles of MCMC methods can be found in [23]. The Gibbs sampler (GS) used

to generate samples distributed according to (5) is detailed in the next section.

IV. G IBBS SAMPLERS FOR WAVE EXTRACTION

A. Standard Gibbs Sampler

To obtain samples fromp (b,a,h, σ2
n|x), the standard GS iteratively generates samples

from p (b|a,h, σ2
n, x), p (a|b,h, σ2

n, x), p (h|a,b, σ2
n, x) andp (σ2

n|a,b,h, x) as summarized in
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Algorithm 1.

Algorithm 1 the classical GS
for k = 1 to K do

Samplebk from p (bk|b∼k,a,h, σ2
n, x)

end for

Samplea from p (a|b,h, σ2
n, x)

Sampleh from p (h|b,a, σ2
n, x)

Sampleσ2
n from p (σ2

n|b,a,h, x)

Here, b∼k denotes the vectorb without its kth component. As pointed out in [27], this

classical GS is poorly suited to problems with local constraints because a constraint that

excludes parts of the hypothesis space may even inhibit convergence top (b,a,h, σ2
n|x)

altogether.

B. Partially Collapsed Gibbs Sampler

In our case, the unknown parameter vectorθ can be split into two parts, i.e.,(b,a) that con-

tains constrained parameters and(h, σ2
n) that contains unconstrained parameters. To accelerate

the convergence of the Gibbs sampler, we propose a PCGS that takes into considerations the

local constraints affectingb anda. More precisely, denote asJd (k) a right-hand neighborhood

of k with length d, i.e., Jd (k) = {k, . . . , k + d− 1} and divide the wave indicator vector

b and the wave amplitude vectora into two partsbJd(k) = (bk, . . . , bk+d−1), b∼Jd(k) =

(b1, . . . , bk−1, bk+d, . . . , bK) andaJd(k) = (ak, . . . , ak+d−1), a∼Jd(k) = (a1, . . . , ak−1, ak+d, . . . , aK).

The proposed PCGS iteratively generatesbk andak according to the conditional distributions

p
(
bk|b∼Jd(k),a∼Jd(k),h, σ2

n, x
)

and p
(
ak|bk,b∼Jd(k),a∼Jd(k),h, σ2

n, x
)
. The resulting algorithm

is summarized in Algorithm 2 whereas the different conditional distributions are derived in

the appendix and detailed below. Note that the convergence of this sampler to the target

distribution (5) directly results from [24] (see also [25] and [26] for applications of the

PCGS).

Indicators. The sampling distribution forbk is a conditional distribution associated with

the joint posteriorp (b,a,h, σ2
n|x) marginalized with respect to the remaining parameters in

the neighborhoodJd (k) \ k = {k + 1, . . . , k + d− 1}. Thus,bJd(k) is not contained in the

condition forbk. The marginalization of the joint posterior is rarely possible to be done analyt-

ically with respect tobJd(k)\k = [bk+1, . . . , bk+d−1]
T . Indeed, this conditional distribution can
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Algorithm 2 the proposed PCGS
set k = 1

while k ≤ K do

samplebk from p
(
bk|b∼Jd(k),a∼Jd(k),h, σ2

n, x
)

if bk = 1 then

sampleak from p
(
ak|bk = 1,b∼Jd(k),a∼Jd(k),h, σ2

n, x
)

setbJd(k)\k = 0

setk = k + d− 1

end if

setk = k + 1

end while

sampleh from p (h|b,a, σ2
n, x)

sampleσ2
n from p (σ2

n|b,a,h, x)

be calculated asp
(
bk|b∼Jd(k),a∼Jd(k),h, σ2

n, x
)

=
∑

bJd(k)\k
p
(
bJd(k)|b∼Jd(k),a∼Jd(k),h, σ2

n, x
)
.

Thus, we propose to samplebJd(k) from p
(
bJd(k)|b∼Jd(k),a∼Jd(k),h, σ2

n, x
)

and then use thebk

contained in the sample. Therefore, the sampling distribution for wave indicators is

p
(
bJd(k)|b∼Jd(k),a∼Jd(k),h, σ2

n, x
)
∝ σ1 exp

(

|µ1|
2

2σ2
1

)

p (b)

with

σ2
1 =

(∥
∥FJd(k)bJd(k)

∥
∥

2

σ2
n

+
1

σ2
a

)−1

µ1 =
σ2

1bT
Jd(k)F

T
Jd(k)

(
x − F∼Jd(k)B∼Jd(k)a∼Jd(k)

)

σ2
n

whereFJd(k) denotes the columns ofF indexed byJd (k), F∼Jd(k) denotesF without those

columns, andB∼Jd(k) denotes the diagonal matrix diag
(
b∼Jd(k)

)
(see appendix for computation

details).

Amplitudes. Using the fact thatp (a) is a conjugate prior, we obtain

p
(
ak|bk = 1,b∼Jd(k),a∼Jd(k),h, σ2

n, x
)

= N
(
µ1, σ

2
1

)
.

Note that the amplitudeak is sampled only whenbk = 1, i.e., when a wave has been detected.
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Waveform coefficients.Becauseh is a priori Gaussian, it can be treated as one parameter

in the Gibbs sampler without introducing excessive complexity. As a consequence

p
(
h|b,a, σ2

n, x
)

= N
(
µ2,σ

2
2

)

with

µ2 =
σ2

2U
T x

σ2
n

, σ2
2 =

(
UT U
σ2

n

+
IL+1

σ2
h

)−1

whereU is the Toeplitz matrix of sizeK × (L+ 1) with first row [u1 0L] and first column
[
uT 0L

]

U =
















u1 0 · · · 0
...

. . . · · ·
...

uM uM−1 · · · 0

0 uM
.. .

...
...

. . . .. . uM−1

0 · · · 0 uM
















K×(L+1)

.

Note thatUh is equivalent toFBa, thus (3) can be represented asx = Uh+n. As mentioned

in III.A, scale ambiguity inherent to the convolution modelcan be resolved by normalizing

h in every iteration.

Noise variance.As explained in [31], the conditional distribution of the noise variance is

the following inverse gamma distribution

p
(
σ2

n|b,a,h, x
)

= IG
(

ξ +
K

2
, η +

1

2
‖x − FBa‖2

)

.

C. P and T-wave detection and delineation criteria

P and T-wave detection and delineation are based on the estimated posterior distributions

of wave indicators, wave amplitudes and waveform coefficients. These estimated posteriors

are computed from histograms of the samples generated by thePCGS.

1) P and T-wave detection: Unlike most of the approaches found in the literature, no rigid

amplitude threshold is used to determine whether waves are significant or not. The posterior

distribution of wave indicators carries information regarding the probability of having a P or

T-wave at a given location. Thus the detection resultsb̂ can be obtained with various degrees

of certainty by using a local maximum posterior strategy. Since there can only be one T-

wave (P-wave) in each T-searching neighborhood (P-searching neighborhood), the proposed

algorithm compares the highest estimated posterior probability in each neighborhood with
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a given probability threshold (γP for P-wave andγT for T-wave) to decide whether it is

significant or not. If a local maximum posterior probabilityis higher than the threshold, the

corresponding indicator location can be seen as the estimate wave location in this searching

neighborhood. Note that the estimated indicator posteriorprobability at positionk is defined

as follows (the probability of havingbk = 1 equals E[bk], where E[•] is the mathematical

expectation sincebk is a binary random variable)

b̂k,MMSE =
1

Nr

Nr∑

t=1

b
(Nbi+t)
k (6)

whereb(t)k denotes the indicator at positionk generated at iterationt, whileNr is the number

of iterations andNbi is the number of burn-in1 iterations.

When using low values ofγT and γP to increase detection sensitivity, this strategy can

still ensure no more than one wave detection in each target neighborhood. Thus, it can avoid

missing detections of T or P-waves without increasing falsepositives.

2) Estimation of wave amplitudes, waveforms and noise variance: For estimating the wave

amplitudesak corresponding to positionk where a P or T-wave has been detected, we use

the MMSE estimator ofak conditionally uponbk = 1 as shown in (7)

âk,MMSE =
1

|Tk|

∑

t∈Tk

a
(t)
k (7)

wherea(t)
k denotes thekth entry of the amplitude vectora generated by the Markov chain

at iterationt, Tk is the set of indicest of all iterations satisfyingb(t)k = 1 excluding burn-in

iterations. Note that̂ak,MMSE is calculated only when a P or T-wave has been detected.

Concerning the waveform coefficientsh and noise varianceσ2
n, the MMSE estimators are

given by (8) and (9)

ĥMMSE =
1

Nr

Nr∑

t=1

h(Nbi+t) (8)

σ̂2
nMMSE =

1

Nr

Nr∑

t=1

(
σ2

n

)(Nbi+t)
(9)

whereh(t) and (σ2
n)

(t) denote respectivelyh andσ2
n generated at iterationt.

1The burn-in period corresponds to the first iterations of the sampler thatare not used for estimating the unknown

parameters
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Fig. 4. Parameters of the wave delineation method.

3) P and T-wave delineation: Since the estimated waveform̂hMMSE carries information

regarding the wave morphology, we propose a delineation criteria which is based on the

waveform estimate of each processing window.

First of all, the onset and end ofĥMMSE are determined by applying two criteria: i) searching

for the sample wherêhn is below a threshold (ζPon andζPoff for P waves,ζTon andζToff for T

waves) proportional to the maximum modulus ofĥMMSE; ii) searching for a local minimum

of ĥMMSE before or after the wave peak. The samples that supply eitherof these two criteria

are accepted as candidates. The onset ofĥMMSE is selected as the candidate that supplies the

nearest sample before the peak and the end is selected as the candidate that supplies the

nearest sample after the peak. Fig. 4 illustrates this definition of the onset and the end of a

wave, where the onset-peak distance and the peak-end distance of ĥMMSE are denoted byτleft

andτright, respectively. In this example, onset is the first time instant for which the estimated

waveform coefficient is below the thresholdζPon. Moreover, since all values of the estimated

waveform located on the right of peak are above the threshold, end has been estimated as

the first local minimum on the right of this peak.

Remark 1: We have observed that allowing the wave length to change within a processing

window can further improve delineation performance. Considering a wave within the pro-

cessing window whose wave peak is located at samplek (i.e., b̂k,MMSE = 1), we propose to

compute its onset and end locations as follows






onsetk = round(k − ηkτleft)

endk = round(k + ηkτright)

whereηk =
âk,MMSE

aMMSE
andaMMSE is the average estimated amplitude within the block. In practical
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situation,ηk will be close to 1 and not exactly equal to 1.

As there is no universally acknowledged clear rule to locateonsets and ends of waves,

the delineation thresholds have been obtained by minimizing the error between estimates and

published annotations. The following results have been obtained for the QT database






ζTon = 0.02max
(

ĥT

)

ζToff = 0.1max
(

ĥT

)

ζPon = 0.05max
(

ĥP

)

ζPoff = 0.1max
(

ĥP

)

.

The general flowchart for the proposed algorithm including preprocessing, PCGS and wave

delineation is shown in Fig. 5.

(see (9))

ECG
kb(t)

ak
(t)

h
Preprocessing

Gibbs Sampler

Linear Filtering Cancellation

(t)

Preprocessed ECG Signal

Global Baseline

as shown in Fig. 1
Extracted Wave Search Regions

QRS Detection

Amplitude Estimation

Wave Indicator Estimation

P and T−wave
Delineation
Criteria

Estimated
Peak Locations

Estimated

Estimated
Onset and
End Points

Waveform Estimation

Waveform

Partially Collapsed

QRSi

Using Local MAP (see (7))

(see (8))

Fig. 5. General block diagram for the proposed P and T-wave delineation algorithm.

V. SIMULATION RESULTS

Many simulations have been conducted to validate the algorithm proposed before. First,

we show some posterior distributions and estimation results for one typical example. Then,

graphical evaluations and analytical results on an entire standard database are presented. At

last, a standard criterion has been used to study the convergence of the proposed PCGS.

Usually, the validation of the ECG wave detector or delineator is done using manually

annotated database. In this report, we use one of the easily-available standard databases,

namely the QT database (QTDB) [28]. The QTDB includes some records from the widely

used MIT-BIH Arrhythmia database (MITDB), the European ST-T database (EDB) and some

other well known databases. This database was developed in the purpose of providing a

wave limit validation reference. It provides cardiologistannotations for at least 30 beats per
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recording for both channels. The cardiologist annotationsinclude QRS complexes, P and T

wave peaks, onsets and ends for at least 3600 beats (some of the annotated records contain

only a subset of waveform patterns). The proposed algorithmworks on a single-channel

basis, while the cardiologist annotations were performed having in sight all available leads.

Therefore, to compare in a reasonable way the manual annotations on the QTDB with the two

signal-channel annotations produced by the proposed delineator, we choose for each point

the channel with less error. The QTDB also includes an additional annotation performed by

a second cardiologist. However, this annotation only exists for 11 out of 105 records. Thus

it has not been considered in our study.

A. One typical example

The first simulations have been obtained by applying the proposed algorithm on dataset

“sele0136” of QTDB at minute 10. This example has been chosenbecause the signal from

this data set presents some rhythm changes with different amplitudes between P and T-

waves. The processing window lengthD has been set to 8 beats, which corresponds to about

2200 samples. For each P or T-wave search block, we generated100 realizations according

to the priors given in Section III usingσ2
a = 1, σ2

h = 1, ξ = 11 and η = 0.5 (these

are fixed hyperparameters to provide a noninformative prior). The value ofλ is fixed by

calculating the division of R peak numbers within the processing window and the window

length K. We consideredNbi = 40 burn-in iterations (the wayNbi has been adjusted is

explained in Section VI.D). Thus, only the last 60 Markov chain output samples were used

for computing the estimates. Note that running 100 iterations of the proposed algorithm for

a 10-beat ECG block sampled atFs = 250Hz (i.e., ECG signals lasting about 10 seconds)

takes approximately 13 seconds for a MATLABr implementation on a 3.0-GHz Pentium IV.

However, these codes might be further optimized and converted to low-level languages for

clinical use.

As mentioned before, the estimates of the unknown parameters are derived from their

posterior distributions. Fig. 6 shows the posterior distributions of wave indicator locations

p (b|x) estimated by using the last 60 Markov chain iterations. The posterior probability is

very high for most of the actual P and T-wave locations exceptfor P-wave indicators around

time instant 4.45. Indeed, the algorithm seems hesitant to locate P-wave indicators around

this location. If we employ a simple rigid threshold on the entire block, there is a chance this

wave indicator will be missed in the estimation. However, with the local maximum posterior
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Fig. 6. Posterior distributions of the P-wave indicator locationsp (bP|x) (middle) and the T-wave indicator locations

p (bT|x) (bottom) of ECG signal part (top).
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Fig. 7. Real ECG signal dataset “sele0136” (dashed blue) and estimated P and T-waves (red).

strategy explained in Section IV, a relatively low value ofγP can be employed to ensure the

detection of low magnitude waves without increasing false positives. As shown in Fig. 7, the

P wave at time instant 4.45 is well estimated.

Once we have obtained the P and T-wave locations, the corresponding wave amplitudes can

be estimated by using (6). Fig. 8 shows the posterior distributionsp (ak|x) and the estimates

âk of P-wave amplitudes at time 1.5s, 2.3040s, 3.1520s and 4.4520s. Similarly, the noise

variance can be estimated by the MMSE estimator (8). The estimated posterior distribution
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Fig. 8. Posterior distributions of the P-wave amplitudesp (ak|x) with k ∈ {579, 780, 991, 1322}.
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Fig. 9. Posterior distribution of the noise varianceσ2
n.

of the noise variancep (σ2
n|x) is shown in Fig. 9 for this first example.

As presented previously, P and T-wave delineation is based on the estimated waveform

coefficientsĥ according to (7). The delineation results of “sele0136” compared with manual

annotations of expert are illustrated in Fig. 10 (top), whereas the estimated waveform of P

and T-wave for 1 minute signal length are presented in Fig. 10(left) and Fig. 10 (right).
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Fig. 10. Results of processing QTDB dataset sele0136, channel 1, start from minute 10. (a) Delineation results: the vertical

lines show the manual annotations by expert and the markers show the results of the proposed algorithm. (b) The mean (in

blue) and standard deviations (in pink) of estimated T-waveform for 1 minute signal length. (c) The mean (in blue) and

standard deviations (in pink) of estimated P-waveform for 1 minute signallength.

B. P and T-wave delineation for different wave morphologies

Since the proposed method estimates the P and T-waveform shapes pointwise for each

processing window, it is able to adapt to various wave morphologies. This section shows some

other representative results obtained with the proposed method on QTDB. The first example

considers the first channel of QTDB referred to as “sel16539”, where both P and T-waves

are associated to normal patients. The delineation resultsfor the P and T-waves are shown

in Fig. 11.b, whereas the estimated waveform of P and T-wave for each processing block are

presented in Fig. 11.c and Fig. 11.d. All kinds of slope, magnitude and polarity for the P

and T-waves are successfully detected and delineated for this example. The second example

considers feeble P-waves and inverted T-waves by using the first channel of QTDB dataset

“sel306”. The results presented in Fig. 12 show that the proposed method allows a good

waveform estimation for inverted waves. This is particularly interesting for the observation

of wave morphology evolution. Fig. 13 illustrates the delineation result of prominent T-
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waves and feeble P-waves by using the first channel of QTDB dataset “sel308” whereas the

delineation of noisy feeble P and T-waves is shown in Fig. 14 by using the first channel

of QTDB dataset “sele0607”. The delineation results of biphasic T-waves are illustrated in

Fig. 15 by using the first channel of QTDB dataset “sel301”. The corresponding delineation

results of broad P and T-wave morphology are shown in Fig. 16.All the P and T-waves

are successfully detected and well delineated in these examples. Waveform estimations are

also very satisfactory. An example of signals that contain premature ventricular contractions

(PVCs) is also studied by processing the MIT-BIH dataset “119”. As shown in Fig. 17 and Fig.

18 below, the proposed method can handle these non-monotonic morphological abnormalities.

Note in particular that the estimated T-wave of the third beat has been superimposed with

the estimated P-wave of the fourth beat, which is in agreement with the presence of a unique

wave in the non QRS region. Furthermore, with the help of the proposed signal model, the

sudden T-wave amplitude inversion has been detected, whichis a nice property for the PVC

detection problem.
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QTDB−sel16539: P and T−wave delineation
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Fig. 11. Results of processing QTDB dataset sel16539, channel 1, start from minute 10. (a) Delineation results: the vertical

lines show the manual annotations by expert and the markers show the results of the proposed algorithm. (b) The mean (in

blue) and standard deviations (in pink) of estimated T-waveform for 1 minute signal length. (c) The mean (in blue) and

standard deviations (in pink) of estimated P-waveform for 1 minute signallength.
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Fig. 12. Results of processing QTDB dataset sel306, channel 1, startfrom minute 10. (a) Delineation results: the vertical

lines show the manual annotations by expert and the markers show the results of the proposed algorithm. Note that the

manual annotations for T onset are not available. (b) The mean (in blue) and standard deviations (in pink) of estimated

T-waveform for 1 minute signal length. (c) The mean (in blue) and standard deviations (in pink) of estimated P-waveform

for 1 minute signal length.
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Fig. 13. Results of processing QTDB dataset sel308, channel 1, startfrom minute 10. (a) Delineation results: the vertical

lines show the manual annotations by expert and the markers show the results of the proposed algorithm. Note that the

manual annotations for T onset are not available. (b) The mean (in blue) and standard deviations (in pink) of estimated

T-waveform for 1 minute signal length. (c) The mean (in blue) and standard deviations (in pink) of estimated P-waveform

for 1 minute signal length.
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Fig. 14. Results of processing QTDB dataset sel0607, channel 1, start from minute 10. (a) Delineation results: the vertical

lines show the manual annotations by expert and the markers show the results of the proposed algorithm. Note that the

manual annotations for T onset are not available. (b) The mean (in blue) and standard deviations (in pink) of estimated

T-waveform for 1 minute signal length. (c) The mean (in blue) and standard deviations (in pink) of estimated P-waveform

for 1 minute signal length.
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Fig. 15. Results of processing QTDB dataset sel301, channel 1, startfrom minute 10. (a) Delineation results: the vertical

lines show the manual annotations by expert and the markers show the results of the proposed algorithm. Note that the

manual annotations for T onset are not available. (b) The mean (in blue) and standard deviations (in pink) of estimated

T-waveform for 1 minute signal length. (c) The mean (in blue) and standard deviations (in pink) of estimated P-waveform

for 1 minute signal length.

August 26, 2010 DRAFT



22

3.5 4 4.5 5 5.5 6 6.5 7 7.5
−1

−0.5

0

0.5

1
QTDB−sel41: P and T−wave delineation

(a
)

time(sec)

0 0.05 0.1 0.15

−0.2

0

0.2

0.4

0.6

0.8

1
T−waveform estimation (normalized)

(b
)

time(sec)
0 0.05 0.1 0.15

−0.2

0

0.2

0.4

0.6

0.8

1
P−waveform estimation (normalized)

(c
)

time(sec)

Fig. 16. Results of processing QTDB dataset sel41, channel 1, start from minute 10. (a) Delineation results: the vertical

lines show the manual annotations by expert and the markers show the results of the proposed algorithm. (b) The mean (in

blue) and standard deviations (in pink) of estimated T-waveform for 1 minute signal length. (c) The mean (in blue) and

standard deviations (in pink) of estimated P-waveform for 1 minute signallength.
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Fig. 17. On the top, preprocessed ECG signal MIT-BIH dataset “119”(dashed blue) and estimated P and T-waves (red).

T-waves around the PVC beat (around second 9) are well estimated. On the bottom, the estimated P and T-wave amplitudes

for the same signal portion.
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Fig. 18. Results of processing MIT-BIH dataset “119”. (1) Delineationresults: the markers show the results of the proposed

algorithm. (2) Mean (in blue) and standard deviations (in pink) of the estimated T-waveform for 1 minute of signal length.

(3) Mean (in blue) and standard deviations (in pink) of the estimated P-waveform for 1 minute of signal length.

August 26, 2010 DRAFT



24

C. P and T-wave Delineation - Analytical results

The analytical evaluation of the P and T-wave detection can be performed by calculating the

sensitivity (also referred to as detection rate)Se = TP/ (TP + FN) and positive predictivity

P+ = TP/ (TP + FP ), where TP denotes the number of true positive detections (wave was

present and has been detected), FN stands for the number of false negative detections (wave

was present but has been missed) and FP stands for the number of false positive (wave

was not present and has been detected). Moreover, the performance of wave delineation is

measured by the average of the errorsm, which stands for the time differences between

cardiologist annotations and results of the proposed automatic method. The average of the

intra-recording standard deviations denoted ass was also computed. As explained in [7],

we consider the absent reference mark on an annotated beat asa no present wave decision,

which means that the obtainedP+ can be interpreted as a lower limit for the actual sensitivity.

The analytical validation results obtained with the MCMC-based delineator and the results

of three other methods on the QTDB mentioned in [2], [7] and [19] are given in Table I.

Despite the relatively small number ofTon annotations provided by cardiologists in QTDB,

we have still counted the results independently fromTpeak andTend. It should also be noted

that the proposed algorithm requires an a priori QRS detection. All ECG signals used in

this report have been preprocessed by Panet al.’s QRS detection algorithm (as presented in

Section II), resulting in an overall QRS detection result ofSe = 99.7% andP+ = 99.6%.

The beats where QRS complexes are not well detected have been excluded from the P and

T-wave evaluation.

The detection results on the QTDB show that the proposed method can detect with high

sensitivity the P and T-waves annotated by cardiologists inthe ECG signals. We obtained a

sensitivity ofSe = 98.93% for the P-waves and a sensitivity ofSe = 99.81% for the T-waves,

results which are slightly better than the ones obtained with the other methods. As for the

positive predictivity, despite it is a pessimiste estimateof the actualP+ (which is not possible

to calculate), we have still obtained good results sinceP+ = 97.4% for the P-waves and

P+ = 98.97% for the T-waves, which outperforms the other algorithms evaluated in Table

I. This is partly because the minimum-distance constraint in Bayesian detection reduces the

probability of false positive. The delineation performance is also presented in Table I. The

proposed algorithm can delineate the annotated P and T-waves with mean errorsm that do

not exceed two samples (8 ms). The standard deviationss are around four samples for the
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P-wave and five samples for the T-wave, which is quite satisfactory.

TABLE I

DELINEATION AND DETECTION PERFORMANCE COMPARISON IN THEQTDB. (N/A: NOT AVAILABLE )

Method Parameters Pon Ppeak Pend Ton Tpeak Tend

annotations 3176 3176 3176 1345 3403 3403

PCGS Se (%) 98.93 98.93 98.93 99.01 99.81 99.81

(this work) P+ (%) 97.40 97.40 97.40 96.07 98.97 98.97

m± s (ms) 3.7±17.3 4.1±8.6 -3.1±15.1 7.1±18.5 1.3±10.5 4.3±20.8

annotations 3194 3194 3194 N/A 3542 3542

WT [7] Se (%) 98.87 98.87 98.75 N/A 99.77 99.77

P+ (%) 91.03 91.03 91.03 N/A 97.79 97.79

m± s (ms) 2.0±14.8 3.6±13.2 1.9±12.8 N/A 0.2±13.9 -1.6±18.1

Se (%) 97.70 97.70 97.70 N/A 99.00 99.00

LPD [2] P+ (%) 91.17 91.17 91.17 N/A 97.74 97.74

m± s (ms) 14.0±13.3 4.8±10.6 -0.1±12.3 N/A -7.2±14.3 13.5±27.0

Analysis of Se (%) N/A N/A N/A N/A 92.60 92.60

TU complexes P+ (%) N/A N/A N/A N/A N/A N/A

[19] m± s (ms) N/A N/A N/A N/A -12.0±23.4 0.8±30.3

Moreover, the histograms of deviations between the resultsof the proposed algorithm

compared to the “gold standard” of cardiologist manually measured TP interval (TPint =

Tpeak− Ppeak), P wave duration (Pdur = Ponset− Pend), ST interval (STint = Speak− Tend) and

QTp interval (QTp
int = Qpeak− Tpeak) are presented in Fig. 19. The deviations of the PCGS

based method are similar to the results obtained with recentproposed method [15]. Smaller

deviations (mostly below 8 ms) have been obtained for those detections which rely on peak

points, i.e., TPint and QTpint. For those detections which rely on peak boundaries, the deviations

are also in the acceptable range (mostly below 20 ms). Note that the proposed method focuses

on P and T-wave analysis problem, thus the deviations of QRS locations are not considered

in the validation.
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Fig. 19. Histograms of deviations between the markings of the proposed automatic algorithm compared to the “gold

standard” of manually measured annotations including (a) TP interval, (b) P wave duration, (c) ST interval and (d) QTp

interval.

D. Comparison with a method based on a Gaussian mixture model

In [15], Sayadiet al. have proposed an interesting ECG segmentation approach based

on Kalman filters (KF). With the help of O. Sayadi, we have carried out a comparison

of the PCGS based method with the KF based method. Some qualitative comparisons of

the two methods on several representative datasets from theQT database are presented in

Fig. 20-23. It can be seen that the PCGS estimates are closer tothe manual annotations

(depicted by vertical black lines) than the estimates resulting from [15]. Meanwhile, Fig. 25

shows the absolute errors ofTpeak, Tend, Pon, Ppeak andPend for the delineation results of the

two methods (the absolute error of a given parameter vector is defined as the norm of the

difference between the actual value of the parameter vectorand its estimate). These results

have been obtained for 118 representative signals from the QT database. It appears that the

proposed PCGS provides smaller errors than the KF based method of [15], especially when

considering pathological ECG signals (the Gaussian mixturemodel studied in [15] is more

appropriate to normal ECG signals).

To finish, based on the comparison between the two methods, itshould also be noted that
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Fig. 20. Delineation results for QT database “sele0136”, which presentssome rhythm changes with different amplitudes

between P and T-waves. The upper plot shows the results of the proposed PCGS method, and the lower plot shows the

results of the method proposed in [15]. The vertical lines in both of two plotsshow the manual detection results provided

by cardiologists.

12 12.5 13 13.5 14 14.5 15 15.5
−0.5

0

0.5

1
QTDB−sel16273: P and T−wave delineation results with the PCGS approach
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Fig. 21. Delineation results for QT database “sel16273”. The upper plotshows the results of the proposed PCGS method,

and the lower plot shows the results of the method proposed in [15]. The vertical lines in both of two plots show the manual

detection results provided by cardiologists.
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QTDB−sel308: P and T−wave delineation results with the PCGS approach
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Fig. 22. Delineation results for QT database “sel308”. The upper plot shows the results of the proposed PCGS method,

and the lower plot shows the results of the method proposed in [15]. The vertical lines in both of two plots show the manual

detection results provided by cardiologists.
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QTDB−sel808: P and T−wave delineation results with the PCGS approach
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Fig. 23. Delineation results for QT database “sel808”. The upper plot shows the results of the proposed PCGS method,

and the lower plot shows the results of the method proposed in [15]. The vertical lines in both of two plots show the manual

detection results provided by cardiologists.
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QTDB−sel50: P and T−wave delineation results with the PCGS approach
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Fig. 24. Delineation results for QT database “sel50”, which is classified as“no P-wave” pathology. The upper plot shows

the results of the proposed PCGS method, and the lower plot shows the results of the method proposed in [15]. The vertical

lines in both of two plots show the manual detection results provided by cardiologists.

1) the performance of the KF method depends on its initialization which can be difficult to

adjust, 2) the Gaussian mixture model and the KF method of [15] are not really appropriate

to ECG signals with abnormal rhythms contrary to the PCGS that estimates the whole P and

T wave shapes (since the KF method always determines a fixed number of Gaussian kernels

to fit the data). Moreover, the algorithm of [15] is not able tohandle the absence of T or

P-wave in some pathological ECGs, contrary to the PCGS method.As shown in Fig. 24,

the KF method detect P-waves in dataset “sel50” from the QT database (see green circles

before the QRS) while the cardiologists have classified all signals from this dataset as “no

P-wave” pathologies. Conversely, the PCGS method does not detect the P waves for these

signals, as desired. The price to pay with the good perfomance of the proposed PCGS is its

computational complexity which is significantly larger than the KF method of [15].

August 26, 2010 DRAFT



30

0 20 40 60 80 100 120
0

20

40

Delineation results comparison

|
sel16539

|
sel16273

|
sele0136

|
sel808

|
sel308

T
−

w
a

v
e

 P
e

a
k

A
b

s
o

lu
te

 E
rr

o
r 

(m
s
)

Beat number

 

 
PCGS
KF

0 20 40 60 80 100 120
0

20

40

P
−

w
a

v
e

 P
e

a
k

A
b

s
o

lu
te

 E
rr

o
r 

(m
s
)

Beat number

0 20 40 60 80 100 120
0

20

40

T
−

w
a

v
e

 E
n

d
A

b
s
o

lu
te

 E
rr

o
r 

(m
s
)

Beat number

0 20 40 60 80 100 120
0

20

40

P
−

w
a

v
e

 O
n

s
e

t
A

b
s
o

lu
te

 E
rr

o
r 

(m
s
)

Beat number

0 20 40 60 80 100 120
0

20

40

P
−

w
a

v
e

 E
n

d
A

b
s
o

lu
te

 E
rr

o
r 

(m
s
)

Beat number

Fig. 25. Absolute errors between the estimated values ofTpeak, Tend, Pon, Ppeak and Pend and manual annotations for

representative signals from the QT datasets “sel16539”, “sel16273”,“sele0136”, “sel808” and “sel308” (blue empty circles

correspond to the PCGS method whereas red full circles correspond tothe results provided by O. Sayadi associated to the

method of [15].
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E. Receiver operating characteristics for P and T-wave detection

Receiver operating characteristics (ROC) have been performed to select possibly optimal

values ofγP andγT . The ROC curve for P-wave detection has been computed using three

typical datasets and three “no P-wave” datasets available in QT database. The results depicted

in Fig. 26(a) show the good performance of the proposed detector. Of course, the threshold

γP can be determined from a fixed probability of false alarm (PFA) using this ROC. For

the QT database, we have chosen a thresholdγP = 0.4 corresponding to a probability of

detection PD=1 and PFA=0.05. Similarly, the ROC curve for T-wave can be calculated based

on three typical datasets from the QT database and three synthesized “no T-wave” datasets

(since the QT database does not contain signals classified as“no T-wave”). A good detection

performance can also be confirmed as shown in Fig. 26(b). For the QT database, we have

chosenγT = 0.55 that corresponds to PD=1 and PFA =0.01.
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Fig. 26. ROC analysis for P and T-wave detection.

F. Convergence diagnostic

A crucial issue when using MCMC methods is convergence assessment, which can help

us to determine appropriate values of the numbers of burn-initerationsNbi and computation

iterationsNr. To monitor the convergence of the proposed MCMC approach, wehave

implemented the multivariate potential scale reduction factor (MPSRF) criterion proposed

by Brooks et al. in [34]. This diagnostic is based on the comparison between estimates

resulting fromp parallel Monte Carlo chains as follows

MPSRF=
p− 1

p
+
q + 1

q
eig
(
V−1

intraV inter

)
(10)

August 26, 2010 DRAFT



32

where the inter-chain and intra-chain covariance matricesare defined as follows

V intra =
1

p (q − 1)

p
∑

j=1

q
∑

t=1

(
ψjt − ψj·

) (
ψjt − ψj·

)T
(11)

V inter =
1

p− 1

p
∑

j=1

(
ψj· − ψ··

) (
ψj· − ψ··

)T
(12)

and where
{

ψ
(i)
jt , j = 1, . . . , p; t = 1, . . . , q

}

denotes theith element of the parameter vector

ψ in chain j at time t, ψj· (respectivelyψ··) denotes the local mean (respectively global

mean) of chains and eig(V) is the largest eigenvalue of the positive-definite matrixV.
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Fig. 27. Evolution of MPSRF criterion on QTDB dataset “sele0136” for theunknown parameters (ψ =
(

b̂, â, ĥ
)

), the

proposed PCGS in blue and the classical GS in red.

As an example, Fig. 27 shows the MPSRF criterion applied on signals from QTDB dataset

“sele0136” onp = 10 independent chains of the proposed PCGS and the classical GS for

ψ =
(

b̂, â, ĥ
)

. Since a value of MPSRF below 1.2 is recommended in [34], the criterion

confirms a good convergence of the proposed sampler withNbi = 40 burn-in iterations, which

outperforms significantly the classical GS.

VI. CONCLUSIONS AND FUTURE WORKS

This report studied a Bayesian sampling algorithm performing joint P and T-wave delin-

eation and waveform estimation. Instead of deploying rigiddetection and delineation criteria

for all ECG time series, we used a local detection strategy anda flexible delineation criteria

based on the estimation of P and T waveforms in consecutive beat-processing windows. The

proposed algorithm can be summarized as follows
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• Preprocessing: QRS detection, baseline removal and definition of search windows

• Generation of samples asymptotically distributed according to the posterior distribution

using a PCGS

• Estimation of the P and T-wave peak locations, amplitudes and waveform coefficients

based on the generated samples using MMSE estimators

• P and T-wave detection and delineation based on the estimated P and T-wave peak

locations, amplitudes and waveform coefficients

The main contributions of this work are: 1) The introductionof a hierarchical Bayesian

model for P and T-wave delineation. This model is based on a modified Bernoulli-Gaussian

sequence with minimum distance constraint for the wave locations and amplitudes and

appropriate priors for the wave impulse responses and noisevariance. 2) The derivation of

a PCGS allowing one to generate samples distributed according to the posterior distribution

associated to the previous hierarchical Bayesian model. Theproposed PCGS overcomes

the slow convergence problem which the classical Gibbs sampler exhibits when processing

parameters with strong local dependencies. To our knowledge, it is the first time this kind of

simulation method is applied to ECG segmentation problems. 3) The proposed method allows

us to estimate simultaneously the P and T-wave fiducial points and the P and T-waveforms,

which is rarely done by other ECG delineation methods. 4) The PCGS based method allows

us to determine the confidence intervals which provide the reliability information of the

estimates. This could also be useful for medical diagnosis.

The resulting algorithm was validated using the entire annotated QT database. A compar-

ison with other benchmark methods showed that the proposed method provides a reliable

detection and an accurate delineation for a wide variety of wave morphologies. The most

significant improvement was found in the P and T-wave detection rate and the positive

predictivity. In addition, the proposed method can also provide waveform estimation. We have

to mention here that the price to pay with the proposed algorithm is a higher computational

cost when compared to other more classical methods.

It is also interesting to note that our algorithm also allowsobservation of the waveform

evolution among processing blocks. If we extract T-wave search region on every-other-beat

rather than successively, the proposed method can be directly used to perform TWA analysis.

Indeed, the wave amplitude can be used to decide the presenceor absence of TWA, while

the waveform estimation can reflect the characterization ofTWA waveform. This study is

currently under investigation.
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APPENDIX

PROOF OF THE SAMPLING DISTRIBUTIONS

Indicators. The sampling distribution forbJd(k) can be obtained as follows

p
(
bJd(k)|b∼Jd(k),a∼Jd(k),h, σ2

n, x
)

∝ p
(
bJd(k),b∼Jd(k),a∼Jd(k),h, σ2

n, x
)

∝ p
(
x|b,a∼Jd(k),h, σ2

n

)
p (a|b) p (b) p (h) p

(
σ2

n

)

∝ p
(
x|b,a∼Jd(k),h, σ2

n

)
p (a|b) p (b)

∝

[ ∫

p
(
x|b,a,h, σ2

n

)
p
(
aJd(k)|bJd(k)

)
daJd(k)

]

p (b)

Using the minimum-distance constraint, there can only be one non-zero wave indicator within

the neighborhoodJd(k). Let k
′
∈ Jd(k) denote this only non-zero indicator location,bJd(k) can

be seen as two parts 





bk′ = 1

bm = 0,m ∈ Jd (k) \ k
′

whereJd (k)\k
′

denotes the set of locations within the neighborhoodJd(k) excludingk
′
. The

conditional distribution can be further developped by inserting all the prior distributions

p
(
bJd(k)|b∼Jd(k),a∼Jd(k),h, σ2

n, x
)

∝

∫

exp

[

−
1

2σ2
n

∥
∥
∥
∥

x − F∼Jd(k)B∼Jd(k)a∼Jd(k)
︸ ︷︷ ︸

x̃

−FJd(k)BJd(k)aJd(k)

∥
∥
∥
∥

2

−
ak

′

2σ2
a

]
∏

m∈Jd(k)\k
′

δ (am) daJd(k)p (b)

∝

[ ∫

exp

[

−
1

2σ2
n

‖x̃ − fk
′ak

′‖2 −
ak

′

2σ2
a

]

dak
′

]

p (b)

∝

[ ∫

exp

[

−
1

2

(

ak
′

(
fT

k
′fk

′

σ2
n

+
1

σ2
a

)

︸ ︷︷ ︸
1

σ2
1

ak
′ − ak

′

fT

k
′ x̃

σ2
n

︸︷︷︸
µ1
σ2
1

−
x̃Tfk

′

σ2
n

ak
′

)]

dak
′

]

p (b)

∝

[ ∫

exp

[

−
(ak

′ − µ1)
2

2σ2
1

+
µ2

1

2σ2
1

]

dak
′

]

p (b)

∝ σ1 exp

[
µ2

1

2σ2
1

]

p (b)
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whereσ2
1 andµ1 contain information aboutbJd(k) and are defined as

σ2
1 =

(

‖fk
′‖2

σ2
n

+
1

σ2
a

)−1

=

(∥
∥FJd(k)bJd(k)

∥
∥

2

σ2
n

+
1

σ2
a

)−1

µ1 =
σ2

1f
T

k
′ x̃

σ2
n

=
σ2

1bT
Jd(k)F

T
Jd(k)x̃

σ2
n

.

Amplitudes. The sampling distribution forak can be obtained as follows

p
(
ak|bk = 1,b∼Jd(k),a∼Jd(k),h, σ2

n, x
)

∝

∫

p
(
aJd(k)|b,a∼Jd(k),h, σ2

n, x
)

daJd(k)\k

∝

∫

p
(
x|b,a,h, σ2

n

)
p
(
aJd(k)|bJd(k)

)
daJd(k)\k

Consequently, similar to the conditional distribution ofbJd(k), the following results can be

obtained

p
(
ak|bk = 1,b∼Jd(k),a∼Jd(k),h, σ2

n, x
)

∝

∫

exp

[

−
1

2σ2
n

∥
∥
∥
∥
x̃ − FJd(k)BJd(k)aJd(k)

∥
∥
∥
∥

2

+
ak

2σ2
a

]
∏

m∈Jd(k)\k

δ (am) daJd(k)\k

∝ exp

[

−
1

2σ2
n

∥
∥
∥
∥
x̃ − fkak

∥
∥
∥
∥

2

+
ak

2σ2
a

]

∝ exp

[

−
1

2σ2
1

(ak − µ1)
2

]

that can be summarized as

p
(
ak|bk = 1,b∼Jd(k),a∼Jd(k),h, σ2

n, x
)

= N
(
µ1, σ

2
1

)
.

Waveform coefficients.The sampling distribution forh can be obtained as follows

p
(
h|b,a, σ2

n, x
)
∝ p

(
x|b,a,h, σ2

n

)
p (h)

∝ exp

[

−
1

2σ2
n

‖x − Uh‖2

]

exp

[

−
1

2σ2
h

‖h‖2

]

∝ exp

[

−
1

2σ2
n

[
‖Uh‖2 − 2xUh

]
]

exp

[

−
1

2σ2
h
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]

∝ exp
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−
1
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(
1
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n
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1

σ2
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1

σ2
n

xUh
]

Equivalently,

p
(
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)

= N
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µ2,σ

2
2

)
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with

µ2 =
σ2

2U
T x

σ2
n

, σ2
2 =

(
UT U
σ2

n

+
IL+1

σ2
h

)−1

.
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