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P and T-wave Delineation in ECG Signals
Using a Bayesian Approach and a Partially

Collapsed Gibbs Sampler
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Abstract

Detection and delineation of P and T-waves are importaris fiathe analysis and interpretation
of ECG signals. This report approaches this problem usinge&an inference to represent a priori
relationships among ECG wave components. Based on thetlse@etnoduced partially collapsed
Gibbs sampler principle, the wave delineation and estonaire conducted simultaneously by using
a Bayesian algorithm combined with a Markov chain Monte €anlethod. This method exploits
the strong local dependency of ECG signals. The proposatkgyr is evaluated on the annotated
QT database and compared to other classical algorithmsmfioriant property of this work is that
it allows not only the detection of wave peaks and boundabies also the estimation of P and T
waveforms for each analysis window. This can be useful fones&CG analysis that require wave

morphology information.

Index Terms

ECG, P and T-wave delineation, hierarchical Bayesian aiglyartially collapsed Gibbs sam-

pling, Markov chain Monte Carlo method.

. INTRODUCTION

The analysis of electrocardiograms (ECGs) has receivedasarg attention because of its
vital role in many cardiac disease diagnosis. Most of thaadily useful information in ECGs
can be found in the intervals, amplitudes or wave morpholdggrefore, the development of

efficient and robust methods for automatic ECG delineatiansabject of major importance.
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The QRS complex is the most characteristic waveform of the EiG@ak Its high amplitude
makes QRS detection easier than other waves. Thus, it isagnesed as a reference within
the cardiac cycle. Concerning P and T-wave detection andedglon (determination of peaks
and limits of the individual P and T waves), algorithms uubkgin with a QRS detection.
Temporal search windows are then defined before and aftep®t& location to seek for the
other waves. Finally, an appropriate strategy is used t@amr#the characteristic feature of
each wave in order to find the wave peaks and boundaries.

One can find in the literature many different P and T-wavengsliion approaches [1]-[20].
A first class of algorithms is based on filtering techniquashsas adaptive filters [1], low-pass
differentiation (LPD) [2] and nested median filtering [3].s&cond class of methods applies a
basis expansion technique to the ECG signal and use theingstitefficients for detecting P
and T-waves. The different basis functions that have bearidered in the literature include
discrete Fourier transform [4], discrete cosine transffBand wavelet transform (WT) [6]—
[8]. A third class of approaches considers classificatich @atttern recognition methods such
as fuzzy theory [9], artificial neural networks [10], pattgrammars [11] and hidden Markov
models [12]. Delineation can also be based upon the conéditiroy a realistic model to the
ECG and extracting parameters from the model to determinef@wan onsets and offsets.
A particular attention has been devoted to Gaussian mixtudels whose parameters can
be estimated with nonlinear gradient descent [13] or Kalifilgers (KF) [14], [15]. Finally,
we would like to mention other delineation strategies bamedength transformation [16],
uniform thresholding [17], approximating function thedd8] and characterization of TU
complexes [19]. Note that some of these methods can only &é& tesobtain a subset of P
and T-wave characteristic points. Due to the low slope andnagnitude of P and T-waves
and the lack of universally acknowledged clear rule to lecthte beginning and the end
of wave components, P and T-wave delineation remains a ¢oamgdi task. Furthermore,
in addition to the estimation of wave peaks and limits, anueste waveform estimation is
certainly relevant for some medical diagnoses (such asvBwdternans (TWA) detection
[21], [22]) or pathology analysis (such as arrhythmia didec[20]).

In this report, we introduce a novel hierarchical Bayesiardehavhich simultaneously
solves the P and T-wave delineation task and the pointwisefasn estimation problems.
This model takes into account appropriate prior distrimsi for the unknown parameters
(wave locations and amplitudes, waveform coefficients)e Tmior distributions and the

likelihood of the observed data are combined to provide tbstgrior distribution of the
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unknown parameters. This posterior distribution deperushyperparameters that can be
fixed a priori or estimated from the observed data. This riepdl consider both approaches
depending on the available information regarding thesestpgrameters. To alleviate nu-
merical problems related to the posterior associated toPttend T-wave delineation, we
propose to resort to Markov chain Monte-Carlo (MCMC) metho®.[RICMC are powerful
sampling strategies, appropriate to solve complex Bayasi@nence problems. This report
concentrates on a particular MCMC method referred to asgbgrtiollapsed Gibbs sampler
(PCGS) whose convergence properties have been studied jnTTB4 PCGS has shown
interesting properties for electromyography (EMG) [25Haptical coherence tomography
(OCT) [26], [27]. However, to our knowledge, it is the first #na PCGS is applied for P
and T-wave delineation in ECG signals. The ECG state sequdrays dthe Markov property,
since the current state (P-wave, QRS complex and T-wave)daggnds on its previous state.
This property inspires us to study a PCGS imposing a stromgl kependency on the wave
locations. This local dependency improves the convergéetavior and the computational
efficiency of the sampler.

The report is organized as follows. The ECG preprocessingidered in this work
is presented in Section II. Section Il describes the differelements of the hierarchical
Bayesian model that will be used to solve the P and T-wave e@iion problems. Section
IV studies a Gibbs sampler that generates samples disidatcording to the posterior of
the proposed hierarchical Bayesian model. The generategdlssuiwill be used to estimate
the unknown model parameters and hyperparameters. The deteetion and delineation
criteria based on the posterior distributions are alsogmtesl. Simulation results performed
on the standard annotated QT database [28] as well as a asop&w other algorithms are

given in Section V. Finally, conclusions are reported intieecVI.

[I. PREPROCESSING

It is common to view ECGs as the union of two parts, namely, QRS8piexes and non-
QRS regions. The interval between each successive pair of @R&-and the subsequent
QRS-onset constitutes a non-QRS region. Due to the nonsayioature of ECGs, detection
and estimation must involve a limited set of consecutivetdda the proposed method, we
first detect QRS-complexes that are the most prominent partiseoECG signal, and we
shift a nonoverlapping’-beat processing window to cover the whole signal. In thegssing

window, detected QRS-complexes become a reference fortohgfetand T-waves. We define
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a T search region and a P search region for each beat, rafative QRS complex boundaries
depending on a recursively computed RR interval. The T-be@gions and P-search regions
within the processing window are then extracted individutd form a T-wave search block
and a P-wave search block. The preprocessing procedureecannimarized as follows:

1) QRSdetection: QRS complexes are detected using Paal.’s algorithm [29] based on
digital analysis of slope, amplitude and width. The filtgrthat is done prior to this algorithm
is found to be satisfactory. Thus no additional filtering egjuired before the delineation of
P and T-waves. Note however that any other QRS detectionitiigocould be used in this
preprocessing step.

2) Removal of baseline drift: In the proposed algorithm, waveform coefficients are es-
timated simultaneously with the wave detection. Baseling dauses inaccurate waveform
estimation results. For this reason, we employ the methogagsed in [30] to remove baseline
drift in each RR interval.

3) Construction of P and T-wave search blocks: As shown in Fig. 1, in theD-beat
processing window] successive right-hand neighborhoods of QRS offsets can tbacted
to form a T-wave search block. Similarlyy left-hand neighborhoods of QRS onsets can be
extracted to form a P-wave search block. Suppose khatenotes a QRS offset location,
then a T-wave indicator can only appear in the right-handm®rhood ofk.s which can
be denoted as/ (ko) = (kott + 1,..., kox + N7), where N denotes the T-wave search
region width. Similarly, a P-wave indicator can only appeathe left-hand neighborhood
of a QRS onset locatioh,,. It can be denoted a#p(kon) = (kon — Np, . .., kon — 1), Wwhere
Np denotes the P-wave search region width. The length of eagbttaeighborhood could
be fixed either according to the cardiologists or relatechtodurrent estimated RR interval
(denoted by RRI). The amount of neighborhoods in each blockrm#pon the length of the
processing window.

The proposed algorithm processes two search blocks (ong&vi@ve delineation and the
other for P-wave delineation) individually using the sameyd&an inference. Section Il
introduces the Bayesian model applied to T-wave search plglite it should be noted that

this model is compatible for P-wave search block as well.

I1l. HIERARCHICAL BAYESIAN MODEL FOR T-WAVES

Deconvolution models have been widely used in many signatgssing applications

including signal segmentation [31], layer detection [28hd EMG signal analysis [32].
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Fig. 1. Preprocessing procedure within thebeat processing window: (a) Located QRS complexes. (b) T-wearcking
block. (c) P-wave searching block. RRI is the interval between theepteg3RS offset and the next QRS onset and RRI/2
is half of RRI, here we seN; = Np =RRI/2.

Following these ideas, signals in T-wave search blocks aseimed to be the convolu-
tion of an unknown impulse response= |[hy, ... ,hL]T with an unknown input sequence

U=[u,...,uy]" such that

L
Ty = Z hiug—; + ny, (1)
1=0

with £ € {1,..., K}, K = M + L is the block length, and, denotes the additive Gaussian
noise with variance2. Here, we adopt a zero boundary condition, i.e., the unkrnesquence

u,, 1S assumed to vanish for ath ¢ {1,..., M}. In matrix form, (1) can be written as
X=Fu+n (2)

wherex = [z1,...,zx]", n = [n1,...,nk]", F is the Toeplitz matrix of sizex x M with

first row [hg Oas—1] and first column[h” OM_JT (Opr—1 is a(M — 1) x 1 vector of zeros)

ho 0o .- 0
- hy hp i -+ 0
0 A
hp 1
0 - 0 hr | .
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Fig. 2. Modeling of T-wave parts within the T-wave search block.

The sequencer can be further decomposed as a binary sequépces {0,1},m =
1,..., M indicating the T-wave existence multiplied by weight fasta = [al,...,aM]T
representing the T-wave amplitudes, as illustrated in EigNote that the impulse responise
is supposed to be unique fér T-wave search regions within the processing window whereas

the amplitudesa vary from one region to another. Consequently, (2) can beemrias
X =FBa+n 3)

whereB denotes thell x M diagonal matrix diagb) andb = [by, ..., by]".

The unknown parameter vector resulting from this reparariwttion ist = [b”,a’, h”, 2] T
This report proposes to estimate the unknown parameteoiv@cby using Bayesian esti-
mation theory. Bayesian inference @éhis based on the posterior distributign@|x) o
p(x|0)p(0) (wherex means “proportional to”), which is related to the likeliltbof the
observations and the parameter priors. The likelihpox@) and priorp (@) for the T-wave

delineation problem are summarized below.

A. Likelihood

Using (3), the likelihood of the observed data vectozan be expressed as

1 1
p(X|b,a,h,0n) = —F——exp |55 [[X - FBal”
(2m)2 ok 207,

1
where||x|| = (x"x)* denotes the Euclidean norm.
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B. Prior distributions

We propose to model the unknown sequenge= aib, as a Bernoulli-Gaussian (BG)
sequence
by ~ Be(\), aplb, =1~ N(0,02) (4)

whereBe() is the Bernoulli distribution with parametersuch thatp [b, = 1] = A. In order
to handle both positive and negative wave amplitudgss distributed according to a zero
mean Gaussian distribution with varianeg whenb, = 1, whereass;, = 0 otherwise.
Because of the Markov property of ECG, successive T-waves ngnappear in search
regions located in the right-hand neighborhoods of each QiR®tqwhereas P-waves are
located to the left-hand neighborhoods of each QRS onsetis ffite T-wave indicator vector
b cannot have two elements = 1 andb,, = 1 closer than a minimum-distance constraint
whered depends on the RR interval length. Consequently, the T-wateetilen problem can
be seen as a BG blind deconvolution problem with determiistial constraints as in [26],
[27]. The prior ofb can then be defined as the product of a minimum-distance reamst

indicator function(b) and the likelihood of independent Bernoulli random variable

p<b>o<< 11 p(b@) Ic(b)

=1,..,K
where I(b) enforces the minimum-distance constréing C, i.e., Io(b) =1 if b € C and
Ic(b)=0if b¢ C.

Since there is no relation between the noise, the impulg@onse and the BG sequence,
o2, hand(b, a) are assigned a priori independent priors suchthi@) = p (b, a) p (h) p (¢2).
The impulse responde and noisen are assigned Gaussian prigsgh) = A (0,021144), and
p(n) =N (0,021 k), wherel 5 denotes the identity matrix of sizZ€ x N. Choosing conjugate
Gaussian priors foa andh considerably simplifies the algorithm since the resultiogdi-
tional distributions are also Gaussian. Her€,and o7 are fixed hyperparameters whereas
the noise variance? is estimated jointly with the other parameters using a hidiaal
Bayesian model. The impulse response is normalized to awate ssmbiguity (different
values of amplitude and impulse response could provide dhgesconvolution results) such
that o7 = 1. Moreover, the proposed algorithm normalizes the ECG signéth different
amplitude resolutions by their maximum R-peak amplitudehsthat o> = 1 can cover all

possible amplitude values. For the prioredf, we use an inverse gamma distributi® (¢, 7)
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Fig. 3. DAG for the prior distributions; the fixed parameters appear skathboxes.

as suggested in [31], wheteandr are fixed hyperparameters providing a vague prior (few

informative).

C. Posterior distribution

The posterior distribution of the unknown parameters candseputed from the following

hierarchical structure

p(0]x) o< p(x[0)p(alb)p(b)p(h)p(a2). (5)

This hierarchical structure is shown on the directed acyglaph (DAG) of Fig. 3. The usual
Bayesian estimators related to this posterior are the mimmean square error (MMSE)
estimator and the maximum a posteriori (MAP) estimators|.[EBie to the complexity
of the posterior distribution (5), it is difficult to obtainosed-form expressions of these
estimators. As a consequence, we propose to study an MCMCodhethich generates
samples asymptotically distributed according to the tadistribution (5). The MMSE or
MAP estimators of the unknown parameters are then compudieg the generated samples.
The main principles of MCMC methods can be found in [23]. TheliSisampler (GS) used

to generate samples distributed according to (5) is detaighe next section.

V. GIBBS SAMPLERS FOR WAVE EXTRACTION
A. Sandard Gibbs Sampler

To obtain samples fronp (b, a, h,02|x), the standard GS iteratively generates samples

n

from p (bla, h, 02, x), p(alb,h,o2,x), p(hla,b,c2,x) andp (¢2|a, b, h,x) as summarized in
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Algorithm 1.

Algorithm 1 the classical GS
for k=1to Kdo

Sampleb,, from p (b|br,a h, o2, X)

) n?

end for
Samplea from p (alb, h, 02, X)
Sampleh from p (h|b, a, 62, x)

Sampleo? from p (o2|b, a, h, x)

Here, b, denotes the vectdp without its " component. As pointed out in [27], this
classical GS is poorly suited to problems with local consteabecause a constraint that
excludes parts of the hypothesis space may even inhibitecgaunce top (b, a, h, o2 |x)

altogether.

B. Partially Collapsed Gibbs Sampler

In our case, the unknown parameter ve@aan be split into two parts, i.eb, a) that con-
tains constrained parameters dhds?) that contains unconstrained parameters. To accelerate
the convergence of the Gibbs sampler, we propose a PCGS kieatitdo considerations the
local constraints affectin anda. More precisely, denote ak (k) a right-hand neighborhood
of k& with lengthd, i.e., J;(k) = {k,...,k+d— 1} and divide the wave indicator vector
b and the wave amplitude vectar into two partsby,y = (bk, ..., bkrd-1), Doy =
(b1, ., bk—1,bpsd, - -, br) @andag,y = (ag, . .., rgd—1)s Bogye) = (a1, .- -, k1, g, - - -, OK ).
The proposed PCGS iteratively generaiganda, according to the conditional distributions
P (brlbegyy, 3gyi), N, 02, %) and p (ag|by, bg,m), 8wg,), h, 02,%). The resulting algorithm
is summarized in Algorithm 2 whereas the different condibdistributions are derived in
the appendix and detailed below. Note that the convergehdhi® sampler to the target
distribution (5) directly results from [24] (see also [25)ca[26] for applications of the
PCGS).

Indicators. The sampling distribution fob, is a conditional distribution associated with
the joint posterionp (b, a, h, o2|x) marginalized with respect to the remaining parameters in
the neighborhood); (k) \ k = {k+1,...,k+d — 1}. Thus,by,) is not contained in the
condition forb,. The marginalization of the joint posterior is rarely pbsito be done analyt-

ically with respect tddy,xp\r = [bt1, - - - ,bHd_l]T. Indeed, this conditional distribution can
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Algorithm 2 the proposed PCGS
setk=1

while k£ < K do
sampleby from p (b)), @wgy), N, 02, X)
if b, =1 then

sampleay, from p (ax|br, = 1, by, @wgy), D, 02, X)
setby,yx =0
setk=k+d—-1
end if
setk=k+1
end while
sampleh from p (h|b, a, 02, x)

samples? from p (o2|b, a, h, x)

be calculated ap (bi|b~y,(k), 8y, D, 02, X) = ij o P P (b, Pgy(h)> Begiiys D, 02, X).
Thus, we propose to samptg, ) from p (de 1) [P, (k) By (k) h,an,x) and then use thg,

contained in the sample. Therefore, the sampling distobuior wave indicators is

2
(de(k ’bNJd aw‘]d h,O’n,X) X 01 €xXp <|;L;|2 ) p(b)

1
1
) (HFde)de(k)HQ N i)
B o2 o2

o050 Fhm (X — FrqnBaam@ca,m)
o2

with

M1 =

whereF ;) denotes the columns df indexed byJ; (k), F. ;) denotesF without those
columns, and... ;) denotes the diagonal matrix diémjd(k)) (see appendix for computation

details).

Amplitudes. Using the fact thap (a) is a conjugate prior, we obtain
p (ak|bk =1, bNJd(k)7a~Jd(k h,Jn,X) N (/“70%) ‘

Note that the amplitude;, is sampled only wheh, = 1, i.e., when a wave has been detected.
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Waveform coefficients.Becauséh is a priori Gaussian, it can be treated as one parameter

in the Gibbs sampler without introducing excessive compteds a consequence
P (h|b, a, OZ,X) =N (LLQ,a%)

with

2 2
Oh

a2UTx uTu | !
Ly = 2 o a_g _ ( n L+1)
Gn Un

whereU is the Toeplitz matrix of size< x (L + 1) with first row [u; O] and first column
[UT OL}

uy 0 0
U: uM uM—l “ee 0
0 Unr
Upr—1
0 0 Upg

- - Kx(L+1)
Note thatUh is equivalent td=Ba, thus (3) can be represented»xas- Uh +n. As mentioned
in lll.A, scale ambiguity inherent to the convolution moaein be resolved by normalizing

h in every iteration.

Noise variance.As explained in [31], the conditional distribution of theis® variance is

the following inverse gamma distribution

K 1
P (ai|b,a, h,x) = IG (5 + o + 3 X — FBa||2) .

C. P and T-wave detection and delineation criteria

P and T-wave detection and delineation are based on theagdstinposterior distributions
of wave indicators, wave amplitudes and waveform coeffisiehese estimated posteriors
are computed from histograms of the samples generated byGi&S.

1) P and T-wave detection: Unlike most of the approaches found in the literature, narig
amplitude threshold is used to determine whether wavesigindisant or not. The posterior
distribution of wave indicators carries information regjag the probability of having a P or
T-wave at a given location. Thus the detection resniltsin be obtained with various degrees
of certainty by using a local maximum posterior strategyic8ithere can only be one T-
wave (P-wave) in each T-searching neighborhood (P-seayaieighborhood), the proposed
algorithm compares the highest estimated posterior pililyain each neighborhood with
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a given probability threshold+¢ for P-wave andy; for T-wave) to decide whether it is
significant or not. If a local maximum posterior probabilisyhigher than the threshold, the
corresponding indicator location can be seen as the estimate location in this searching
neighborhood. Note that the estimated indicator postg@nobability at positionk is defined
as follows (the probability of having, = 1 equals Eb,|, where He] is the mathematical
expectation sincé, is a binary random variable)

N,

- 1 = .

bk,MMSE — i Z b’(ngrH) (6)
t=1

r

wherebl(f) denotes the indicator at positidngenerated at iteratiof) while N, is the number
of iterations andV,; is the number of burn-initerations.

When using low values ofi and~p to increase detection sensitivity, this strategy can
still ensure no more than one wave detection in each targghinerhood. Thus, it can avoid
missing detections of T or P-waves without increasing falgsitives.

2) Estimation of wave amplitudes, waveforms and noise variance: For estimating the wave
amplitudesa;, corresponding to positiok where a P or T-wave has been detected, we use
the MMSE estimator ofi;, conditionally uponb, = 1 as shown in (7)

X _ 1 ()
Ak MMSE = m Z ayp (7)

teTy,
where a,(f) denotes the&™ entry of the amplitude vectoa generated by the Markov chain
at iterationt, 7, is the set of indices of all iterations satisfying” = 1 excluding burn-in
iterations. Note that,, yvse iS calculated only when a P or T-wave has been detected.
Concerning the waveform coefficierttsand noise variance?, the MMSE estimators are
given by (8) and (9)

N,
. 1 = )
Aumse = ﬁ Z H(Mbi+) (8)
T =1
I o (Nbi+1)
~ Npj+t
OnMMSE = N Z (Ui) i )
T ot=1

whereh® and (aﬁ)(t) denote respectivelit and o2 generated at iteration

The burn-in period corresponds to the first iterations of the sampleraifeanot used for estimating the unknown

parameters
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Fig. 4. Parameters of the wave delineation method.

3) P and T-wave delineation: Since the estimated waveformuse carries information
regarding the wave morphology, we propose a delineatiaer@i which is based on the
waveform estimate of each processing window.

First of all, the onset and end bf;yse are determined by applying two criteria: i) searching
for the sample wherén is below a threshold{fen and (post for P waves (ton and (7o for T
waves) proportional to the maximum modulushafuse; i) searching for a local minimum
of hymse before or after the wave peak. The samples that supply eithitrese two criteria
are accepted as candidates. The onséh@fe is selected as the candidate that supplies the
nearest sample before the peak and the end is selected aarttiielate that supplies the
nearest sample after the peak. Fig. 4 illustrates this diefinof the onset and the end of a
wave, where the onset-peak distance and the peak-endaﬁsbz&ﬁMMSE are denoted byjes
andTign, respectively. In this example, onset is the first time instar which the estimated
waveform coefficient is below the threshale,,. Moreover, since all values of the estimated
waveform located on the right of peak are above the threslarid has been estimated as
the first local minimum on the right of this peak.

Remark 1: We have observed that allowing the wave length to changeamatiprocessing
window can further improve delineation performance. Comsid) a wave within the pro-
cessing window whose wave peak is located at sarafies., Ek,MMSE = 1), we propose to

compute its onset and end locations as follows

onset = round(k — 7 Tiet)

end, = round(k + 7 Tright)

wherer),, = % andaywvse Is the average estimated amplitude within the block. Intgorac
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situation,n; will be close to 1 and not exactly equal to 1.
As there is no universally acknowledged clear rule to locateets and ends of waves,
the delineation thresholds have been obtained by minimpittie error between estimates and

published annotations. The following results have beeaninbt for the QT database

( Cron = O.O2max(ﬁT>
Ctorf = 0.1max <F1T)
Cpon= 0.05max<ﬁp) '

| Gror = 0.1max(ip )

The general flowchart for the proposed algorithm includirgppocessing, PCGS and wave

delineation is shown in Fig. 5.

b‘(<t)
: I R . Wave Indicator Estimation ;
| . Global Baseling: ¥ . — Estimated
ECG-|Linear Filtering Cancellation [ Using Local MAP (see (7)) Peak Locatior
: Partially Collapsed a;(? L Estimated
1 ; Amplitude Estimatiop P and T-wavg stimate
QRS Gibbs Sampler |_X, (see (8) —>| Delineation [~ Onget and
‘ h(t) Criteria End Points
; QRS Detectiop- —» [ Waveform Estimation Estimated
' Preprocessing ; ‘ (see (9)) Waveform

Extracted Wave Search Regions
as shown in Fig. 1

Fig. 5. General block diagram for the proposed P and T-wave delimealgmrithm.

V. SIMULATION RESULTS

Many simulations have been conducted to validate the algorproposed before. First,
we show some posterior distributions and estimation redalt one typical example. Then,
graphical evaluations and analytical results on an entaedard database are presented. At
last, a standard criterion has been used to study the camnezgof the proposed PCGS.
Usually, the validation of the ECG wave detector or delineasodone using manually
annotated database. In this report, we use one of the easiliable standard databases,
namely the QT database (QTDB) [28]. The QTDB includes somerdscfrom the widely
used MIT-BIH Arrhythmia database (MITDB), the European STalathase (EDB) and some
other well known databases. This database was developdueipurpose of providing a

wave limit validation reference. It provides cardiologastnotations for at least 30 beats per
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recording for both channels. The cardiologist annotatioetide QRS complexes, P and T
wave peaks, onsets and ends for at least 3600 beats (some afhnlbtated records contain
only a subset of waveform patterns). The proposed algoriforks on a single-channel
basis, while the cardiologist annotations were performadrty in sight all available leads.
Therefore, to compare in a reasonable way the manual aroratn the QTDB with the two

signal-channel annotations produced by the proposeded¢tin we choose for each point
the channel with less error. The QTDB also includes an amiditi annotation performed by
a second cardiologist. However, this annotation only exist 11 out of 105 records. Thus

it has not been considered in our study.

A. One typical example

The first simulations have been obtained by applying the gseg@ algorithm on dataset
“sele0136” of QTDB at minute 10. This example has been chbsmause the signal from
this data set presents some rhythm changes with differeplitacies between P and T-
waves. The processing window lengthhas been set to 8 beats, which corresponds to about
2200 samples. For each P or T-wave search block, we gener@@dealizations according
to the priors given in Section lll using? = 1, 07 = 1, £ = 11 andnp = 0.5 (these
are fixed hyperparameters to provide a noninformative pribhe value of) is fixed by
calculating the division of R peak numbers within the preoeg window and the window
length K. We consideredV,, = 40 burn-in iterations (the wayV, has been adjusted is
explained in Section VI.D). Thus, only the last 60 Markov ichautput samples were used
for computing the estimates. Note that running 100 iteretiof the proposed algorithm for
a 10-beat ECG block sampled At = 250Hz (i.e., ECG signals lasting about 10 seconds)
takes approximately 13 seconds for a MATLRBmplementation on a 3.0-GHz Pentium IV.
However, these codes might be further optimized and coeweld low-level languages for
clinical use.

As mentioned before, the estimates of the unknown parameter derived from their
posterior distributions. Fig. 6 shows the posterior dittions of wave indicator locations
p (b|x) estimated by using the last 60 Markov chain iterations. Thstgyior probability is
very high for most of the actual P and T-wave locations exé@pP-wave indicators around
time instant 4.45. Indeed, the algorithm seems hesitanbdaté P-wave indicators around
this location. If we employ a simple rigid threshold on theirenblock, there is a chance this

wave indicator will be missed in the estimation. Howevethvthe local maximum posterior
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ECG signal: dataset sele0136
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Fig. 6. Posterior distributions of the P-wave indicator locatigr®p|x) (middle) and the T-wave indicator locations

p (br|x) (bottom) of ECG signal part (top).
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Fig. 7. Real ECG signal dataset “sele0136” (dashed blue) and edlirRaaed T-waves (red).

strategy explained in Section IV, a relatively low valuegf can be employed to ensure the
detection of low magnitude waves without increasing falssifives. As shown in Fig. 7, the
P wave at time instant 4.45 is well estimated.

Once we have obtained the P and T-wave locations, the comdsp wave amplitudes can
be estimated by using (6). Fig. 8 shows the posterior digiohsp (a;|x) and the estimates
a, of P-wave amplitudes at time 1.5s, 2.3040s, 3.1520s and2@sASSimilarly, the noise

variance can be estimated by the MMSE estimator (8). Thenat#d posterior distribution
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Fig. 8. Posterior distributions of the P-wave amplitugdsy. |x) with k € {579, 780,991, 1322}.

Posterior distribution of the noise variance
T T

Fig. 9. Posterior distribution of the noise variangg.

of the noise variance (o2|x) is shown in Fig. 9 for this first example.

As presented previously, P and T-wave delineation is basethe estimated waveform
coefficientsh according to (7). The delineation results of “sele0136” paned with manual
annotations of expert are illustrated in Fig. 10 (top), velaer the estimated waveform of P

and T-wave for 1 minute signal length are presented in Fig(léf®) and Fig. 10 (right).

August 26, 2010 DRAFT



18

QTDB-sele0136: P and T-wave delineation

RN TS

T-waveform estimation (normalized) P-waveform estimation (normalized)
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Fig. 10. Results of processing QTDB dataset sele0136, channeltifrgta minute 10. (a) Delineation results: the vertical
lines show the manual annotations by expert and the markers showstlits ref the proposed algorithm. (b) The mean (in
blue) and standard deviations (in pink) of estimated T-waveform for lutaisignal length. (¢) The mean (in blue) and

standard deviations (in pink) of estimated P-waveform for 1 minute sigmnaith.

B. P and T-wave delineation for different wave morphologies

Since the proposed method estimates the P and T-waveforpestmointwise for each
processing window, it is able to adapt to various wave mdagies. This section shows some
other representative results obtained with the proposdtiodeon QTDB. The first example
considers the first channel of QTDB referred to as “sel16588iere both P and T-waves
are associated to normal patients. The delineation regultdhe P and T-waves are shown
in Fig. 11.b, whereas the estimated waveform of P and T-wawedch processing block are
presented in Fig. 11.c and Fig. 11.d. All kinds of slope, niagi®e and polarity for the P
and T-waves are successfully detected and delineatedifoexample. The second example
considers feeble P-waves and inverted T-waves by using étecfiannel of QTDB dataset
“sel306”. The results presented in Fig. 12 show that the gged method allows a good
waveform estimation for inverted waves. This is particiylanteresting for the observation

of wave morphology evolution. Fig. 13 illustrates the deétion result of prominent T-
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waves and feeble P-waves by using the first channel of QTD&sdat'sel308” whereas the
delineation of noisy feeble P and T-waves is shown in Fig. §4ubing the first channel
of QTDB dataset “sele0607”. The delineation results of bgb T-waves are illustrated in
Fig. 15 by using the first channel of QTDB dataset “sel301"e Tlrresponding delineation
results of broad P and T-wave morphology are shown in Fig.Albthe P and T-waves
are successfully detected and well delineated in these ramwWaveform estimations are
also very satisfactory. An example of signals that contaenature ventricular contractions
(PVCs) is also studied by processing the MIT-BIH dataset “128’shown in Fig. 17 and Fig.
18 below, the proposed method can handle these non-moonatamphological abnormalities.
Note in particular that the estimated T-wave of the thirdtbhdess been superimposed with
the estimated P-wave of the fourth beat, which is in agre¢mvéh the presence of a unique
wave in the non QRS region. Furthermore, with the help of tlep@sed signal model, the
sudden T-wave amplitude inversion has been detected, vidi@mice property for the PVC

detection problem.

QTDB-sel16539: P and T-wave delineation

/ / / /
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Fig. 11. Results of processing QTDB dataset sel16539, channeltlfrsta minute 10. (a) Delineation results: the vertical
lines show the manual annotations by expert and the markers showstlits ref the proposed algorithm. (b) The mean (in
blue) and standard deviations (in pink) of estimated T-waveform for lutaisignal length. (¢) The mean (in blue) and
standard deviations (in pink) of estimated P-waveform for 1 minute signajth.
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QTDB-sel306: P and T-wave delineation
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Fig. 12. Results of processing QTDB dataset sel306, channel 1frstartminute 10. (a) Delineation results: the vertical
lines show the manual annotations by expert and the markers showsthiesref the proposed algorithm. Note that the
manual annotations for T onset are not available. (b) The mean (ip hhe standard deviations (in pink) of estimated
T-waveform for 1 minute signal length. (c) The mean (in blue) and stahdeviations (in pink) of estimated P-waveform

for 1 minute signal length.

QTDB-sel308: P and T-wave delineation
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Fig. 13. Results of processing QTDB dataset sel308, channel 1frstartminute 10. (a) Delineation results: the vertical
lines show the manual annotations by expert and the markers showsthiés ref the proposed algorithm. Note that the
manual annotations for T onset are not available. (b) The mean (in hhe standard deviations (in pink) of estimated
T-waveform for 1 minute signal length. (c) The mean (in blue) and stahdeviations (in pink) of estimated P-waveform

for 1 minute signal length.
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QTDB-sele0607: P and T-wave delineation
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Fig. 14. Results of processing QTDB dataset sel0607, channel tLfrstarminute 10. (a) Delineation results: the vertical
lines show the manual annotations by expert and the markers showsthiesref the proposed algorithm. Note that the
manual annotations for T onset are not available. (b) The mean (ip hhe standard deviations (in pink) of estimated
T-waveform for 1 minute signal length. (c) The mean (in blue) and stahdeviations (in pink) of estimated P-waveform

for 1 minute signal length.

QTDB-sel301: P and T-wave delineation
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Fig. 15. Results of processing QTDB dataset sel301, channel 1frstartminute 10. (a) Delineation results: the vertical
lines show the manual annotations by expert and the markers showsthiés ref the proposed algorithm. Note that the
manual annotations for T onset are not available. (b) The mean (in hhe standard deviations (in pink) of estimated
T-waveform for 1 minute signal length. (c) The mean (in blue) and stahdeviations (in pink) of estimated P-waveform

for 1 minute signal length.
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QTDB-sel41: P and T-wave delineation
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Fig. 16. Results of processing QTDB dataset sel41, channel 1, siartrhinute 10. (a) Delineation results: the vertical
lines show the manual annotations by expert and the markers showstlits ref the proposed algorithm. (b) The mean (in
blue) and standard deviations (in pink) of estimated T-waveform for lutaisignal length. (c) The mean (in blue) and

standard deviations (in pink) of estimated P-waveform for 1 minute signaith.
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Fig. 17. On the top, preprocessed ECG signal MIT-BIH dataset “1d8%hed blue) and estimated P and T-waves (red).
T-waves around the PVC beat (around second 9) are well estimatettheottom, the estimated P and T-wave amplitudes

for the same signal portion.
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MITBIH-119: P and T-wave delineation
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Fig. 18. Results of processing MIT-BIH dataset “119”. (1) Delineatesults: the markers show the results of the proposed
algorithm. (2) Mean (in blue) and standard deviations (in pink) of the ettsn&waveform for 1 minute of signal length.
(3) Mean (in blue) and standard deviations (in pink) of the estimated Rfaaw for 1 minute of signal length.
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C. P and T-wave Delineation - Analytical results

The analytical evaluation of the P and T-wave detection epdrsformed by calculating the
sensitivity (also referred to as detection rate)= 7'P/ (T'P + FN) and positive predictivity
Pt =TP/(TP + FP), where TP denotes the number of true positive detectionge(weas
present and has been detected), FN stands for the numbds®inkegative detections (wave
was present but has been missed) and FP stands for the nuinf®seo positive (wave
was not present and has been detected). Moreover, the iparioe of wave delineation is
measured by the average of the errers which stands for the time differences between
cardiologist annotations and results of the proposed aatiormethod. The average of the
intra-recording standard deviations denotedsasas also computed. As explained in [7],
we consider the absent reference mark on an annotated baat@gresent wave decision,
which means that the obtainét™ can be interpreted as a lower limit for the actual sensytivit
The analytical validation results obtained with the MCMC-dxhslelineator and the results
of three other methods on the QTDB mentioned in [2], [7] and] [Are given in Table I.
Despite the relatively small number @f,, annotations provided by cardiologists in QTDB,
we have still counted the results independently froga. and Teng It should also be noted
that the proposed algorithm requires an a priori QRS detec#dl ECG signals used in
this report have been preprocessed by Bam.'s QRS detection algorithm (as presented in
Section 1l), resulting in an overall QRS detection resultSef = 99.7% and P™ = 99.6%.
The beats where QRS complexes are not well detected have kelexer from the P and
T-wave evaluation.

The detection results on the QTDB show that the proposedadeathn detect with high
sensitivity the P and T-waves annotated by cardiologisthenECG signals. We obtained a
sensitivity of Se = 98.93% for the P-waves and a sensitivity & = 99.81% for the T-waves,
results which are slightly better than the ones obtaineti Wit other methods. As for the
positive predictivity, despite it is a pessimiste estimaitéhe actualP™ (which is not possible
to calculate), we have still obtained good results siftte = 97.4% for the P-waves and
Pt = 98.97% for the T-waves, which outperforms the other algorithmsleat@d in Table
I. This is partly because the minimum-distance constrairBayesian detection reduces the
probability of false positive. The delineation performans also presented in Table I. The
proposed algorithm can delineate the annotated P and Tswaik mean errorsn that do

not exceed two samples (8 ms). The standard deviaticaa® around four samples for the
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P-wave and five samples for the T-wave, which is quite satisfg

TABLE |

DELINEATION AND DETECTION PERFORMANCE COMPARISON IN THEQTDB. (N/A: NOT AVAILABLE )

Method Parameters Pon Poeak Pend Ton Theak Tend
annotations 3176 3176 3176 1345 3403 3403
PCGS Se (%) 98.93 98.93 98.93 99.01 99.81 99.81
(this work) P (%) 97.40 97.40 97.40 96.07 98.97 98.97
m=+s(ms) | 3.7417.3 | 4.1+8.6 | -3.1+15.1 | 7.1+18.,5| 1.3+10.5 4.3+20.8
annotations 3194 3194 3194 N/A 3542 3542
WT [7] Se (%) 98.87 98.87 98.75 N/A 99.77 99.77
Pt (%) 91.03 91.03 91.03 N/A 97.79 97.79
m=+s(ms) | 2.0£14.8 | 3.6£13.2 | 1.9+12.8 N/A 0.2£13.9 | -1.6+£18.1
Se (%) 97.70 97.70 97.70 N/A 99.00 99.00
LPD [2] Pt (%) 91.17 91.17 91.17 N/A 97.74 97.74
m =+ s(ms) | 14.0£13.3 | 4.8+£10.6 | -0.1+12.3 N/A -7.2£14.3 | 13.5:27.0
Analysis of Se (%) N/A N/A N/A N/A 92.60 92.60
TU complexes| P71 (%) N/A N/A N/A N/A N/A N/A
[19] m =+ s(ms) N/A N/A N/A N/A -12.0+£23.4 | 0.8+30.3

Moreover, the histograms of deviations between the resfltdhe proposed algorithm
compared to the “gold standard” of cardiologist manuallyaswed TP interval (TR =
Tpeak — Ppea, P wave duration (R = Ponset— Pend), ST interval (ST = Speak— Tend and
QT” interval (QT; = Qpeak— Tpeay are presented in Fig. 19. The deviations of the PCGS
based method are similar to the results obtained with rguemosed method [15]. Smaller
deviations (mostly below 8 ms) have been obtained for thesections which rely on peak
points, i.e., TR; and QT,,. For those detections which rely on peak boundaries, thiatienws
are also in the acceptable range (mostly below 20 ms). Natetike proposed method focuses
on P and T-wave analysis problem, thus the deviations of QR&itms are not considered

in the validation.
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Fig. 19. Histograms of deviations between the markings of the propaswenatic algorithm compared to the “gold
standard” of manually measured annotations including (a) TP intervaR (wvave duration, (c) ST interval and (d) @T

interval.

D. Comparison with a method based on a Gaussian mixture model

In [15], Sayadiet al. have proposed an interesting ECG segmentation approackl base
on Kalman filters (KF). With the help of O. Sayadi, we have ie@lrout a comparison
of the PCGS based method with the KF based method. Some ¢ualitmmparisons of
the two methods on several representative datasets fror@thdatabase are presented in
Fig. 20-23. It can be seen that the PCGS estimates are clogbe tmanual annotations
(depicted by vertical black lines) than the estimates tegufrom [15]. Meanwhile, Fig. 25
shows the absolute errors Bfecax ZTend, Fons Fpeak @nd Peng for the delineation results of the
two methods (the absolute error of a given parameter vestdefined as the norm of the
difference between the actual value of the parameter vextdrits estimate). These results
have been obtained for 118 representative signals from theld@abase. It appears that the
proposed PCGS provides smaller errors than the KF based dhetHa5], especially when
considering pathological ECG signals (the Gaussian mixtooeel studied in [15] is more
appropriate to normal ECG signals).

To finish, based on the comparison between the two methodkottld also be noted that
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QTDB-sele0136: P and T-wave delineation results with the PCGS approach
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Fig. 20. Delineation results for QT database “sele0136”, which presemte rhythm changes with different amplitudes
between P and T-waves. The upper plot shows the results of the pbE8GS method, and the lower plot shows the
results of the method proposed in [15]. The vertical lines in both of two mlotsv the manual detection results provided

by cardiologists.

QTDB-sel16273: P and T-wave delineation results with the PCGS approach
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Fig. 21. Delineation results for QT database “sel16273". The uppersplms the results of the proposed PCGS method,
and the lower plot shows the results of the method proposed in [15]. dittieal lines in both of two plots show the manual

detection results provided by cardiologists.
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QTDB-sel308: P and T-wave delineation results with the PCGS approach
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Fig. 22. Delineation results for QT database “sel308”. The upper plwshhe results of the proposed PCGS method,
and the lower plot shows the results of the method proposed in [15]. &ittieal lines in both of two plots show the manual

detection results provided by cardiologists.

QTDB-sel808: P and T-wave delineation results with the PCGS approach
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Fig. 23. Delineation results for QT database “sel808”". The upper plowshhe results of the proposed PCGS method,
and the lower plot shows the results of the method proposed in [15]. dittieal lines in both of two plots show the manual

detection results provided by cardiologists.
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QTDB-sel50: P and T-wave delineation results with the PCGS approach
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Fig. 24. Delineation results for QT database “sel50”, which is classifi¢t@®-wave” pathology. The upper plot shows
the results of the proposed PCGS method, and the lower plot shows tiis dsthe method proposed in [15]. The vertical

lines in both of two plots show the manual detection results provided by tagits.

adjust, 2) the Gaussian mixture model and the KF method dfdfié not really appropriate

to ECG signals with abnormal rhythms contrary to the PCGS thinates the whole P and
T wave shapes (since the KF method always determines a fixatharuof Gaussian kernels
to fit the data). Moreover, the algorithm of [15] is not ableh@andle the absence of T or
P-wave in some pathological ECGs, contrary to the PCGS methedhown in Fig. 24,

the KF method detect P-waves in dataset “sel50” from the Q@bdse (see green circles
before the QRS) while the cardiologists have classified glals from this dataset as “no
P-wave” pathologies. Conversely, the PCGS method does nettditte P waves for these
signals, as desired. The price to pay with the good perfomaifdthe proposed PCGS is its

computational complexity which is significantly larger ththe KF method of [15].
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Delineation results comparison

|se|16539 |Se|16273 |se|eOl36 |se|808 |se|308

N
o

N

T-wave Peak
Absolute Error (ms)
o

Beat number

o
o

T-wave End
Absolute Error (ms)
ny
S

o

Beat number

'S
o

P-wave Peak
n
=]

Absolute Error (ms)

o

o
o

P-wave Onset
Absolute Error (ms)
ny
S

o

'S
o

N}
o

P-wave End
Absolute Error (ms)

o

Beat number

Fig. 25. Absolute errors between the estimated value$pedic Tend, Pon, Ppeak @nd Peng @and manual annotations for
representative signals from the QT datasets “sel16539”, “sel1623&€0136", “sel808” and “sel308” (blue empty circles
correspond to the PCGS method whereas red full circles correspdhd tesults provided by O. Sayadi associated to the
method of [15].
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E. Receiver operating characteristics for P and T-wave detection

Receiver operating characteristics (ROC) have been pertbtmeselect possibly optimal
values ofyp and~;. The ROC curve for P-wave detection has been computed ulsieg t
typical datasets and three “no P-wave” datasets availaliEli database. The results depicted
in Fig. 26(a) show the good performance of the proposed tetedf course, the threshold
~vp can be determined from a fixed probability of false alarm (PEH&ing this ROC. For
the QT database, we have chosen a thresheld= 0.4 corresponding to a probability of
detection PD=1 and PFA=0.05. Similarly, the ROC curve favave can be calculated based
on three typical datasets from the QT database and threbesypéd “no T-wave” datasets
(since the QT database does not contain signals classifigtbaswave”). A good detection
performance can also be confirmed as shown in Fig. 26(b). QT database, we have
chosemnyr = 0.55 that corresponds to PD=1 and PFA =0.01.

ROC curve for P-wave detections ROC curve for T-wave detections
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Fig. 26. ROC analysis for P and T-wave detection.

F. Convergence diagnostic

A crucial issue when using MCMC methods is convergence assgdswhich can help
us to determine appropriate values of the numbers of burneiiations/ NV, and computation
iterations N,. To monitor the convergence of the proposed MCMC approach,hae
implemented the multivariate potential scale reductioctdia (MPSRF) criterion proposed
by Brookset al. in [34]. This diagnostic is based on the comparison betwesimates

resulting fromp parallel Monte Carlo chains as follows

1 1
MPSRF— pT + %elg(V-l Viner) (10)

intra
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where the inter-chain and intra-chain covariance matragesdefined as follows

Vintra - Z Z ¢]t ¢]t - % )T (11)

7j=1 t=1
Vinter = ﬁ Z (% - E) (¢g - E)T (12)
j=1

and Where{w i =1...,pt=1,... ,q} denotes théth element of the parameter vector
1 in chain j at timet, ¢j, (respectivelyi ) denotes the local mean (respectively global

mean) of chains and e{y) is the largest eigenvalue of the positive-definite ma¥fix

—e— MPSRF of the proposed PCGS
—— MPSREF of the classical GS
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Fig. 27. Evolution of MPSRF criterion on QTDB dataset “sele0136” for tiknown parametersj(= (5,3, ﬁ)), the
proposed PCGS in blue and the classical GS in red.

As an example, Fig. 27 shows the MPSRF criterion applied amassgfrom QTDB dataset
“sele0136” onp = 10 independent chains of the proposed PCGS and the classicabiGS f
) = (6, a, ﬁ). Since a value of MPSRF below 1.2 is recommended in [34], titerion
confirms a good convergence of the proposed samplerMgtk= 40 burn-in iterations, which

outperforms significantly the classical GS.

VI. CONCLUSIONS AND FUTURE WORKS

This report studied a Bayesian sampling algorithm perfogioint P and T-wave delin-
eation and waveform estimation. Instead of deploying radptection and delineation criteria
for all ECG time series, we used a local detection strategyaafteixible delineation criteria
based on the estimation of P and T waveforms in consecuti@egrecessing windows. The

proposed algorithm can be summarized as follows
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. Preprocessing: QRS detection, baseline removal and defirofi search windows

« Generation of samples asymptotically distributed acemydo the posterior distribution

using a PCGS

. Estimation of the P and T-wave peak locations, amplitudes vaaveform coefficients

based on the generated samples using MMSE estimators

. P and T-wave detection and delineation based on the estinfatend T-wave peak

locations, amplitudes and waveform coefficients

The main contributions of this work are: 1) The introductioha hierarchical Bayesian
model for P and T-wave delineation. This model is based on diffed Bernoulli-Gaussian
sequence with minimum distance constraint for the wavetioea and amplitudes and
appropriate priors for the wave impulse responses and maisance. 2) The derivation of
a PCGS allowing one to generate samples distributed acgptdithe posterior distribution
associated to the previous hierarchical Bayesian model. prbposed PCGS overcomes
the slow convergence problem which the classical Gibbs Eaneghibits when processing
parameters with strong local dependencies. To our knoweleitigs the first time this kind of
simulation method is applied to ECG segmentation problemn$h8 proposed method allows
us to estimate simultaneously the P and T-wave fiducial pant the P and T-waveforms,
which is rarely done by other ECG delineation methods. 4) TG&® based method allows
us to determine the confidence intervals which provide thiahiéty information of the
estimates. This could also be useful for medical diagnosis.

The resulting algorithm was validated using the entire taled QT database. A compar-
ison with other benchmark methods showed that the proposstaoah provides a reliable
detection and an accurate delineation for a wide variety afenmorphologies. The most
significant improvement was found in the P and T-wave deiactate and the positive
predictivity. In addition, the proposed method can alswg® waveform estimation. We have
to mention here that the price to pay with the proposed dlgoris a higher computational
cost when compared to other more classical methods.

It is also interesting to note that our algorithm also allavservation of the waveform
evolution among processing blocks. If we extract T-waveadeaegion on every-other-beat
rather than successively, the proposed method can beldivsetd to perform TWA analysis.
Indeed, the wave amplitude can be used to decide the preseraimsence of TWA, while
the waveform estimation can reflect the characterizatiom\WA waveform. This study is

currently under investigation.
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APPENDIX

PROOF OF THE SAMPLING DISTRIBUTIONS

can be obtained as follows

h, o2 X)

Y n’

B 3,0 D guk) > By (k)
.h o2 X)

) n’

o p (Bg(k)s Bray(iys Bt
o< p (X|b, a k), h,02) p(alb) p(b) p (h) p (c7)
o p (x]b, 2400, 1.02) p (alb) p (b)

X [/p(X|b,37h,Ui)p(aJd(kﬂde(k))daJd(k) p(b)

Using the minimum-distance constraint, there can only leeram-zero wave indicator within

the neighborhood); ;. Let ke )

denote this only non-zero indicator locatiday, ) can

be seen as two parts

by =1
by = 0,m € Jy (k) \ K

whereJ; (k) \ k" denotes the set of locations within the neighborhdgg excludingk’. The

conditional distribution can be further developped by rting all the prior distributions

P (ba,0) Pgy(h)» Begirys D, 02, X)

o

—F 300 Bauky @)

/ exp
/ exp

/ exp
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whereo? and u; contain information aboub (k) and are defined as

-1 ) -1
2 (nfk [ ) _(HFde)demH +1>
e o2 o2 N o2 op

Tg 2
O’lfk/X aled FJd(k

H1 o = 2 2
o2 o2

Amplitudes. The sampling distribution fot;, can be obtained as follows
(ak|bk =1,b gy, 8, (k) h,O'mX)
o / P (8,0 |B, @<y, h, 07, X) day, ik

(8 /p (X’b> a h, Ug) p (aJd(k)|de(k)) daJd(k)\k

Consequently, similar to the conditional distribution f ), the following results can be

obtained

p (anlbk = 1,02 5,0), @vgy), N, 02, X)

1. *a
x /exp {— 252 X = FymBumwanw| + —2;2] H 0 (@) day, (ey\
n @< medi(k)\k
2 -
X . -
X exp { 2 Jrag|| + 202}

1 2
xXexp| =55 (ar, — )
that can be summarized as
p (ak|bk = 17 bNJd(k)7 aerd(k hv O-nv X) N (Ml) O'%) :
Waveform coefficients.The sampling distribution foh can be obtained as follows

p(h|b,a o2, x) o< p (x|b,a,h,o2) p(h)

) n7

1 1
scexp |~ = UNIE exp [~ o I
L h

X exp 2 [||Uh|] — 2XUh]} exp [—Lz ||h||2]
[ 1

X exp —3 —||UH + — ||h|| —i——XUh
L o

Equivalently,
(h|b a, o na >_N(M2,U§)

August 26, 2010 DRAFT



36

with

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

El

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

N. V. Thakor and Y. S. Zhu, “Application of adaptive filtering to EC@adysis: Noise cancellation and arrhythmia
detection,”|EEE Trans. Biomed. Eng., vol. 38, no. 8, pp. 785-793, 1991.

P. Laguna, R. Jan and P. Caminal, “Automatic detection of wave boundaries in multilead E@@ls: Validation
with the CSE databaseComput. Biomed. Res., vol. 27, no. 1, pp. 45-60, 1994.

P. Strumillo, “Nested median filtering for detecting T-wave offset inG&C Electronics Letters, vol. 38, no. 14, pp.
682—-683, 2002.

I. S. N. Murthy and U. C. Niranjan, “Component wave delineatiorE@G by filtering in the fourier domainMed.

& Bio. Eng. Comput., vol. 30, pp. 169-176, 1992.

I. S. N. Murthy and G. S. S. D. Prasad, “Analysis of ECG from poéeo models,1EEE Trans. Biomed. Eng., vol. 39,
no. 7, pp. 741-751, 1992

C. Li, C. Zheng, and C. Tai, “Detection of ECG characteristic poiniagisvavelet transformsEEE Trans. Biomed.
Eng., vol. 42, no. 1, pp. 21-28, 1995.

J. P. Martnez, R. Almeida, S. Olmos, A. P. Rocha, and P. Laguna, “A Wavelstd&CG delineator: Evaluation on
standard database$FEE Trans. Biomed. Eng., vol. 51, no. 4, pp. 570-581, 2004

A. A. R. Bsoul, S.-Y. Ji, K. Ward, and K. Najarian, “Detection of @RS, and T components of ECG using wavelet
transformation,” inProc. of Int. Conf. on Complex Medical Engineering, vol. 9, no. 11, 2009, pp. 1-6.

S. S. Mehta, S. C. Saxena, and H. K. Verma, “Recognition of P Bnwlaves in electrocardiograms using fuzzy
theory,” in Proc. of the First Regional Conference, IEEE Eng. in Med. and Bio. Society, New Delhi, India, Feb. 1995,
pp. 2/54-2/55.

E. D. A. Botter, C. L. Nascimento, and T. Yoneyama, “A neuradwork with asymmetric basis functions for feature
extraction of ECG P waves|EEE Trans. on Neural Networks, vol. 12, no. 5, pp. 1252-1255, 2001.

P. Trahanias and E. Skordalakis, “Syntactic pattern recognitidheoECG,”|EEE Trans. Pattern. Anal. Mach. Intell.,
no. 7, pp. 648-657, 1990

J. Thomas, C. Rose, and F. Charpillet, “A multi-HMM approach toGE€=gmentation,” irProc. of 18th IEEE Int.
Conf. on Tools with Art. Intel., Arlington, VA, Nov. 2006, pp. 609-616

G. D. Clifford and M. Villarroel, “Model-based determination of QTténvals,” in Proc. of Comput. in Cardiol.,
vol. 33, Valencia, Spain, Sept. 2006, pp. 357-360.

0. Sayadi and M. B. Shamsollahi, “Model-based ECG fiducial {so@xtraction using a modified extended Kalman
filter structure,” inProc. of the First Int. Symp. on App. Sc. in Biomed. and Commun. Tech. (ISABEL), Aalborg,
Denmark, Oct. 2008, pp. 1-5.

——, “A model-based Bayesian framework for ECG beat segatem,” J. of Physiol. Measurement, vol. 30, pp.
335-352, 2009.

F. Gritzali and F. Gehed, “Detection of the P and T waves in an ECGijiput. and Biomed. Res., vol. 22, pp. 83-91,
1989.

August 26, 2010 DRAFT



[17]

(18]

[19]

[20]

[21]

[22]

(23]
[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]
[34]

37

V. S. Chouhan and S. S. Mehta, “Threshold-based detectionasfdPT-wave in ECG using new feature signaht.

J. of Comp. Science and Net. Security, vol. 8, no. 2, pp. 144-152, 2008.

Z. Yang, L. Li, and J. Ling, “Approach to recognition of ECG P weabased on approximating functiond, Biomed.
Eng., vol. 15, no. 2, pp. 120-122, 1998.

J. A. Vila, Y. Gang, J. Presedo, M. Delgado, S. Barro, and Malik] “A new approach for TU complex
characterization,EEE Trans. Biomed. Eng., vol. 47, no. 6, pp. 746-772, 2000.

Z. Elghazzawi and F. Gehed, “A knowledge-based systemriiytamia detection,” irProc. of Comput. in Cardial.,
Indianapolis, IN, Sept. 1996, pp. 541-544.

J. P. Marinez and S. Olmos, “Methodological principles of T Wave Alternans aislysunified framework,"|EEE
Trans. Biomed. Eng., vol. 52, no. 4, pp. 599-613, 2004.

S. M. Narayan and J. M. Smith, “Differing rate dependence antpteal distribution of repolarization alternans in
patients with and without ventricular tachycardid,"Cardiovasc. Electrophysiol., vol. 10, pp. 61-77, 1999.

C. P. Robert and G. Casell®jonte Carlo Satistical Methods. New York: Springer, 2004.

D. A. Van Dyk and T. Park, “Partially collapsed Gibbs samplersediy and methodsJ. Acoust. Soc. Amer., vol.
103, pp. 790-796, 2008.

D. Ge, “Decomposition impulsionnelle multi-source. Application aux signalectromyographiques,” Ph.D. disserta-
tion, Ecole Centrale de Nantes, France, Dec. 2009.

G. Kalil, C. Novak, B. Hofer, and F. Hlawatsch, “A blind Monte Cadetection-estimation method for optical coherence
tomography,” inProc. |EEE Int. Conf. Acoust., Speech, and Sgnal Processing (ICASSP), Taipei, Taiwan, April 2009,
pp. 493-496.

G. Kail, J.-Y. Tourneret, F. Hlawatsch, and N. Dobigeon, “Atzlly collapsed gibbs sampler for parameters with
local constraints,” inProc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), Dallas, USA, March
2010, pp. 3886-3889.

P. Laguna, R. Mark, A. Goldberger, and G. Moody, “A databfs evaluation of algorithms for measurement of QT
and other waveform intervals in the ECGZomputers in Cardiology, vol. 24, pp. 673-676, 1997.

J. Pan and W. J. Tompkins, “A real-time QRS detection algoritHfeEE Trans. Biomed. Eng., vol. 32, no. 3, pp.
230-236, 1985.

V. S. Chouhan and S. S. Mehta, “Total removal of baseline ¢rdifin ECG signal,” inProc. of the Int. Conf. on
Computing: Theory and Applications, Kolkata, March 2007, pp. 512-515.

N. Dobigeon, J.-Y. Tourneret, and M. Davy, “Joint segmentatid piecewise constant autoregressive processes by
using a hierarchical model and a Bayesian sampling approt€eBE Trans. Sgnal Process, vol. 55, pp. 1251-1263,
April 2007.

D. Ge, E. L. Carpentier, and D. Farina, “Unsupervised Bayediecomposition of multi-unit EMG recordings using
Tabu search,|EEE Trans. Biomed. Eng., vol. 56, no. 12, pp. 1-9, Dec. 2009.

H. L. Van Trees Detection, Estimation and Modulation Theory. New York: John Wiley & Sons Inc., 1968.

S. P. Brooks and A. Gelman, “General methods for monitoringvemence of iterative simulations]. of Comput.
Graph. Sat., vol. 7, no. 4, pp. 434-455, 1998.

August 26, 2010 DRAFT



